гл. 17 (вып. 2} «Пространство - время»; гл. 13 (вып. 5) «Магнитостатика»
§ 1. Четырехвекторы
В этой главе мы рассмотрим применение специальной теории относительности к электродинамике. Мы изучали теорию относительности довольно давно (гл. 15—17, вып. 2), поэтому я здесь коротко напомню основные идеи.
Экспериментально установлено, что законы физики при равномерном движении не изменяются. Если вы находитесь внутри звездолета, летящего с постоянной скоростью по прямой линии, то не можете установить самого факта движения корабля: для этого надо выглянуть наружу или по крайней мере провести какие-то наблюдения, связанные с внешним миром. Любой написанный нами истинный закон физики должен быть сформулирован так, чтобы этот факт природы был «встроен» в него.
Соотношение между пространством и временем в двух системах координат (одна из которых 6" равномерно движется относительно другой 5 в направлении оси
(25.1)
Законы физики должны быть таковы, чтобы после преобразований Лоренца они в новой форме выглядели абсолютно так же, как и раньше. Это в точности напоминает принцип независимости законов физики от
Там мы обнаружили, что если, скажем, взять два вектора
то комбинация
при повороте системы координат не меняется. Таким образом, если с обеих сторон уравнения мы видим скалярное произведение, подобное А·В, то уравнение будет иметь в точности ту же форму в любой повернутой системе координат. Кроме того, мы открыли оператор (см. гл. 2)
который, будучи применен к скалярной функции, дает три величины, преобразующиеся в точности как вектор. С помощью этого оператора был определен градиент, а в комбинации с другими векторами — дивергенция и лапласиан. И, наконец, мы обнаружили, что, составляя суммы некоторых попарных произведений компонент двух векторов, можно получить три величины, которые ведут себя подобно новому вектору. Мы назвали это
Пользуясь ею, можно так записать любое уравнение физики, что обе его части преобразуются при вращениях одинаковым образом. Если одна его часть — вектор, то вектором должна быть и другая часть, и обе они при вращении системы координат изменяются в точности одинаково. Аналогично, если одна часть скаляр, то скаляром должна быть и другая часть, так что ни та, ни другая не изменяется при вращении системы координат и т. д.
В теории относительности пространство и время неразделимо связаны друг с другом, поэтому то же самое придется проделать и для четырех измерений. Мы хотим, чтобы наши уравнения оставались неизменными не только при вращениях, но и при переходе в
Наша программа состоит в том, чтобы повторить в четырехмерном пространстве-времени все то, что мы делали с векторами в трех измерениях. Дело это нехитрое — мы просто будем действовать аналогично. Единственное затруднение встретится только при обозначениях (символ вектора у нас уже занят трехмерными векторами), и несколько изменятся знаки в скалярном произведении.