Читаем Feynmann 6a полностью

Поскольку последние три слагаемых в формуле (25.7) пред­ставляют просто трехмерное скалярное произведение, то часто удобнее принять такую запись:

Очевидно, что введенную выше четырехмерную длину можно записать как аmаm:

(25.8)

Но иногда удобно эту величину записать как а2m:

Продемонстрируем теперь плодотворность четырехмерного скалярного произведения. Антипротоны ') получают на боль­ших ускорителях из реакции

Иначе говоря, высокоэнергетический протон сталкивается с по­коящимся протоном (например, с помещенной в пучок водород­ной мишенью), и если падающий протон обладает достаточной энергией, то вдобавок к двум первоначальным протонам может родиться пара протон—антипротон.

Какой энергией должен обладать падающий протон, чтобы эта реакция стала энергетически возможной?

Ответ легче всего получить, рассмотрев эту реакцию в систе­ме центра масс (ц. м.) (фиг. 25.1). Назовем падающий протон протоном а, а его четырехимпульс обозначим через рam. Анало­гично, протон мишени назовем b, а его четырехимпульс обозна­чим через рbm. Если энергии падающего протона как раз достаточ­но для реакции, то в конечном состоянии (т. е. в состоянии после соударения) образуется система, содержащая три протона и ан­типротон, покоящиеся в системе ц. м. Если энергия падающего протона будет несколько выше, то частицы в конечном состоя­нии вылетят с некоторой кинетической энергией и будут разле­таться в стороны; если же она немного ниже, то ее будет недо­статочно для образования четырех частиц.

Пусть рсmполный четырехимпульс всей системы в конеч­ном состоянии, тогда, согласно закону сохранения энергии и

а комбинируя эти два выражения, можно написать

(25.9)

Теперь еще одно важное обстоятельство: поскольку мы по­лучили уравнение для четырехвекторов, то оно должно выпол­няться в любой инерциальной системе. Этим фактом можно вос­пользоваться для упрощения вычислений. Напишем длины каждой из частей (25.9), которые, разумеется, тоже должны быть равны друг другу, т. е.

(25.10)

Так как рсm рсmинвариант, то можно вычислить его в ка­кой-то одной системе координат. В системе ц. м. временная компонента рсm равна энергии покоя четырех протонов, т. е. 4М, а пространственная часть р равна нулю, так что рсm=(4М, 0). При этом мы воспользовались равенством масс протона и антипротона, обозначив их одной буквой М.

Таким образом, уравнение (25.10) принимает вид

(25.11)

Произведения раmраm и pbmpbm, вычисляются очень быстро: «дли­на» четырехвектора импульса любой частицы равна просто квадрату ее массы:

Это можно доказать прямыми вычислениями или, несколько бо­лее эффектно, простым замечанием, что в системе покоя ча­стицы рm=(М, 0), а следовательно, рmрm2. А так как это инвариант, то он равен М2 в любой системе отсчета. Подставляя результаты в уравнение (25.11), мы получаем

или

(25.12)

Теперь можно вычислить раmрbm в лабораторной системе. В этой системе четырехвектор рам = а, ра), а рbm=(М, 0), ибо он описывает покоящийся протон. Итак, раmрbm должно быть рав­но МЕа, а мы знаем, что скалярное произведение — это инвари­ант, поэтому оно должно быть равно значению, найденному нами в (25.12). В результате получается

Полная энергия падающего протона должна быть по мень­шей мере равна (что составляет около 6,6 Гэв, так как М=938 Мэв) или после вычитания массы покоя М получаем, что кинетическая энергия должна быть равна по меньшей мере 6М (около 5,6 Гэв). Именно с тем, чтобы иметь возможность производить антипротоны, бетатрон в Беркли проектировался на кинетическую энергию ускоренных протонов около 6.2 Гэв.

Скалярное произведение — инвариант, поэтому полезно знать его величину. Что, например, можно сказать о «длине» четырехвектора скорости umum?

т. е. um — единичный четырехвектор.

§ 3. Четырехмерный градиент

Следующей величиной, которую нам следует обсудить, яв­ляется четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования д/дх, д/ду, d/dz преобразуются подобно трехмерному вектору и назы­ваются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмер­ным градиентом должны быть (d/dt, д/дх, д/ду d/dz), но это неверно.

Чтобы обнаружить ошибку, рассмотрим скалярную функ­цию, которая зависит только от х и t. Приращение j при малом изменении t на Dt и постоянном х равно

(25.13)

С другой стороны, с точки зрения движущегося наблюда­теля

Используя уравнение (25.1), мы можем выразить Dх' и Dt' через Dt. Вспоминая теперь, что величина х постоянна, так

что Dx=0, мы пишем

Таким образом,

Сравнивая этот результат с (25.13), мы узнаем, что

(25.14)

Аналогичные вычисления дают

(25.15)

Теперь вы видите, что градиент получился довольно странным. Выражения для х и t через х' и t' [полученные решением уравнений (25.1)] имеют вид

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука