Читаем Feynmann 6a полностью

есть четырехвектор. То, что мы называли скалярным и вектор­ным потенциалами, оказывается только разными частями от од­ной и той же физической величины. Они неотделимы друг от друга. А если это так, то релятивистская инвариантность мира очевидна. Вектор Аm мы называем четырехмерным потенциалом (4-потенциалом).

В четырехмерных обозначениях (25.21) приобретает очень простой вид:

(25.22)

Физика этого уравнения та же, что и уравнений Максвелла. Но есть своя прелесть в том, что можно переписывать их в столь элегантной форме. Впрочем, эта красивая форма содержит и кое-что более значительное — из нее непосредственно видна ин­вариантность электродинамики относительно преобразований Лоренца.

Напомним, что уравнение (25.21) можно получить из урав­нений Максвелла только тогда, когда наложено дополнитель­ное условие градиентной инвариантности:

(25.23)

что означает просто СmAm =0, т. е. условие градиентной инвари­антности говорит, что дивергенция четырехмерного вектора Аm равна нулю. Это требование носит название условия Лоренца. Такая форма его записи очень удобна, ибо она инвариантна, а поэтому уравнения Максвелла во всех системах отсчета сохра­няют вид (25.22).

§ 5. Четырехмерный потенциал движущегося заряда

Теперь выпишем законы преобразования, выражающие j и А в движущейся системе через j и А в неподвижной, хотя неяв­но мы уже говорили о них. Поскольку Аm = (j, А) является четырехвектором, это уравнение должно выглядеть подобно (25.1), за исключением того, что t нужно заменить на j, а x — на А. Таким образом,

(25.24)

При этом предполагается, что штрихованная система координат движется по отношению к нештрихованной со скоростью v в направлении оси х.

Рассмотрим один пример плодотворности идеи 4-потенциала. Чему равны векторный и скалярный потенциалы заряда q, движущегося со скоростью v в направлении оси х! Задача очень упрощается в системе координат, движущейся вместе с заря­дом, ибо в этой системе заряд покоится. Пусть заряд находится в начале координат системы S', как это показано на фиг. 25.2.

Фиг. 23.2. Система отсчета S' движется со ско­ростью v (в направлении оси х) по отношению к системе S.

Заряд, покоящийся в начале системы координат S', нахо­дится в системе S в точке x=vt. Потенциалы в точке Р могут быть найдены для любой системы отсчета.

Скалярный потенциал в движущейся системе задается выраже­нием

(25.25)

причем r' — расстояние от заряда q до точки в движущейся си­стеме, где производится измерение поля. Векторный же потен­циал А', разумеется, равен нулю.

Теперь без особых хитростей можно найти потенциалы j и А в неподвижной системе координат. Соотношениями, обрат­ными к уравнениям (25.24), будут

(25.26)

Используя далее выражение для j'[см. (25.25)] и равенство А'=0, получаем

Эта формула дает нам скалярный потенциал j, который мы уви­дели бы в системе S, но он, к сожалению, записан через коорди­наты штрихованной системы. Впрочем, это дело легко попра­вимо; с помощью (25.1) можно выразить t', х', у', z' через t, x, у, z и получить

(25.27)

Повторяя ту же процедуру для вектора А, вы можете показать,

что

А = vj. (25.28)

Это те же самые формулы, которые мы вывели в гл. 21, но там они были получены другим методом.

§ 6. Инвариантность уравнений электродинамики

Итак, потенциалы j.и А, оказывается, образуют в совокупно­сти четырехвектор, который мы обозначили через Аm , а вол­новое уравнение (полное уравнение, выражающее Аm через jm) можно записать в виде (25.22). Это уравнение вместе с сохране­нием заряда (25.19) составляют фундаментальный закон электромагнитного поля:

(25.29)

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука