Читаем Feynmann 6a полностью

Именно так должен преобразовываться четырехвектор. Но в уравнениях (25.14) и (25.15) знаки получились неправильными! Выход в том, что надо заменить неправильное определение четырехмерного оператора градиента (d/dt,С) правильным:

Мы его обозначим Сm . Для такого Сm трудности исчезают, и он ведет себя так, как подобает настоящему четырехвектору. (Ужасно неприятно наличие минусов, но так уж устроено в мире.) Разумеется, говоря, что Сm «ведет себя как четырехвектор», мы подразумеваем, что четырехмерный градиент ска­лярной функции есть четырехвектор. Если j — настоящее ска­лярное (лоренц-инвариантное) поле, то Сmj будет четырехвекторным полем.

Итак, все уладилось. Теперь у нас есть векторы, градиенты и скалярное произведение. Следующий на очереди — инвари­ант, аналогичный дивергенции в трехмерном векторном ана­лизе. Ясно, что аналогом его должно быть выражение Сmbm, где bmвекторное поле, компоненты которого являются функ­циями пространства и времени. Мы определим дивергенцию четырехвектора bm=(bt , b) как скалярное произведение Сm на bm:

где С·b — обычная трехмерная дивергенция вектора b. Не забы­вайте внимательно следить за знаками. Один знак минус свя­зан с определением скалярного произведения [формула (25.7)1, а другой возникает от пространственных компонент Сm [форму­ла (25.16)]. Дивергенция, определяемая формулой (25.7), есть инвариант, и для всех систем координат, отличающихся друг от друга преобразованием Лоренца, применение ее приводит к одинаковой величине.

Остановимся теперь на физическом примере, в котором появ­ляется четырехмерная дивергенция. Ею можно воспользоваться при решении задачи о полях вокруг движущегося проводника. Мы уже видели (гл. 13, § 7, вып. 5), что плотность электрического заряда r и плотность тока j образуют четырехвектор jm=(p, j). Если незаряженный провод переносит ток jx, то в системе от­счета, движущейся относительно него со скоростью v (вдоль оси х), в проводнике наряду с током появится и заряд [который возникает согласно закону

преобразований Лоренца (25.1)1:

Но это как раз то, что мы нашли в гл. 13. Теперь нужно под­ставить эти источники в уравнение Максвелла в движущейся системе и найти поля.

Закон сохранения заряда в четырехмерных обозначениях тоже принимает очень простой вид. Рассмотрим четырехмерную дивергенцию вектора jm :

(25.18)

Закон сохранения заряда утверждает, что утекание тока из еди­ницы объема должно быть равно отрицательной скорости уве­личения плотности заряда. Иными словами,

Подставляя это в (25.18), получаем очень простую форму за­кона сохранения заряда:

(25.19)

Благодаря тому, что Сmjm — инвариант, равенство его нулю в одной системе отсчета означает равенство нулю и во всех дру­гих. Таким образом, если заряд сохраняется в одной системе, он будет сохраняться и во всех других системах координат, дви­жущихся относительно нее с постоянной скоростью.

В качестве последнего примера рассмотрим скалярное про­изведение оператора градиента Сm на себя. В трехмерном про­странстве такое произведение дает лапласиан

Что получится для четырех измерений? Вычислить это очень просто. Следуя нашему правилу скалярного произведения, на­ходим

Этот оператор, представляющий аналог трехмерного лапласиа­на, называется даламбертианом и обозначается специальным

символом

(25.20)

По построению он является скалярным оператором, т. е., если подействовать им, скажем, на четырехвекторное поле, возникает новое четырехвекторное поле. [Иногда даламбертиан определяется с противоположным по отношению к (25.20) зна­ком, так что при чтении литературы будьте внимательны!]

Итак, для большинства величин, перечисленных нами в табл. 25.1, мы нашли их четырехмерные эквиваленты. (У нас еще нет эквивалента векторного произведения, но его нахождение мы оставим до следующей главы.) А теперь соберем в одно место все важнейшие результаты и определения и составим еще одну таблицу (табл. 25.2); она поможет вам лучше запомнить, что во что переходит.

§ 4. Электродинамика в четырехмерных обозначениях

В гл. 18, § 6, мы уже сталкивались с оператором Даламбера, хотя и не знали, что он так называется. Мы нашли там дифферен­циальное уравнение для потенциалов, которое в новых обозна­чениях выглядит так:

(25.21)

С правой стороны (25.21) стоят четыре величины r, jx, j , jz, поделенные на e0 — универсальную постоянную, одинаковую во всех системах координат, если во всех системах для измере­ния заряда используется одна и та же единица. Таким обра­зом, четыре величины r/jе0, jх/e0, jy/e0, jz/e0 тоже преобразуются как четырехвектор. Их можно записать в виде jz0. Оператор Даламбера не изменяется при переходе к другим системам коор­динат, так что четыре величины j, Ах, Ау и Az тоже должны преобразоваться как четырехвектор, т. е. должны быть компо­нентами четырехвектора. Короче говоря, величина

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука