Прежде всего, по аналогии с векторами в трехмерном пространстве, введем
Мы уже сталкивались с одним таким четырехвектором, состоящим из энергии и импульса частицы (см. гл. 17, вып. 2). В наших новых обозначениях он запишется так:
т. е. четырехвектор
Похоже, что игра действительно оказывается нехитрой: единственное, что мы должны сделать,— это найти для каждого трехмерного вектора недостающую компоненту и получить четырехвектор. Однако все же эта задача потруднее, чем кажется на первый взгляд. Возьмем, например, вектор скорости с компонентами
Что будет его временной компонентой? Инстинкт подсказывает нам, что поскольку четырехвектор подобен
Оказывается, что четыре компоненты «скорости», которые нам нужно выписать, превратятся в компоненты четырехвектора, если мы попросту поделим их на
четырехвектор импульса
(25.3)
и поделив его на массу покоя, которая в
(25.4)
что по-прежнему должно быть четырехвектором. (Деление на
(25.5)
Это очень полезная величина; мы можем теперь написать, например,
(25.6)
Таков типичный вид, который должен иметь правильное релятивистское уравнение: каждая сторона его должна быть четырехвектором. (В правой части стоит произведение инварианта на четырехвектор, которое по-прежнему есть четырехвектор.)
§ 2. Скалярное произведение
То, что расстояние от некоторой точки до начала координат не изменяется при повороте, если хотите,— счастливая случайность. Математически это означает, что r2=x2+y2+z2 является инвариантом. Другими словами, после поворота r'2=r2 или
Возникает вопрос: существует ли подобная величина, которая инвариантна при преобразованиях Лоренца? Да, существует. Из (25.1) вы видите, что
Она была бы всем хороша, если бы только не зависела от нашего выбора оси
Она является инвариантом так называемой «полной группы Лоренца», которая включает как перемещения с постоянной скоростью, так и повороты.
Далее, поскольку эта инвариантность представляет собой алгебраическое свойство, зависящее только от правил преобразования (25.1) плюс вращение, то она справедлива для любого четырехвектора. (Все они, по определению, преобразуются одинаковым образом.) Так что для любого четырехвектора аm
Эту величину мы будем называть квадратом «длины» четырехвектора
Если теперь у нас есть
также будет инвариантной (скалярной) величиной. (Фактически мы доказали это уже в гл. 17, вып. 2.) Получилась величина, совершенно аналогичная скалярному произведению векторов. Мы так и будем называть ее
И мы тоже будем придерживаться этого порядка и записывать скалярное произведение просто
(25.7)
Помните, что повсюду, где вы видите два одинаковых значка (вместо m мы иногда будем пользоваться v или другими буквами), необходимо взять четыре произведения и сложить их,