Читаем Feynmann 8 полностью

Как же это может быть, что, когда переходят от (3.15) к (3.17), т. е. когда открывается больше каналов, через фильтры начинает проходить меньше атомов? Это и есть старый, глубо­кий секрет квантовой механики — интерференция амплитуд. С такого рода парадоксом мы впервые встретились в интерферен­ционном опыте, когда электроны проходили через две щели. Помните, мы тогда увидели, что временами кое-где получается меньше электронов, когда обе щели открыты, чем когда открыта одна. Численно это получается вот как. Можно написать ам­плитуду того, что атом пройдет в приборе (3.17) через Т и S' в виде суммы трех амплитуд — по одной для каждого из трех пучков в Т; эта сумма равна нулю:

Ни одна из трех отдельных амплитуд не равна нулю: например, квадрат модуля второй амплитуды есть ga [см. (3.15)], но их сумма есть нуль. Тот же ответ получился бы, если бы мы настро­или S’ на то, чтобы отбирать состояние (-S). Однако при рас­положении (3.16) ответ уже другой. Если обозначить амплитуду прохождения через Т и S' буквой а, то в этом случае мы будем иметь

В опыте (3.16) пучок сперва расщеплялся, а потом восста­навливался. Как мы видим, Шалтая-Болтая удалось собрать обратно. Информация о первоначальном состоянии (+ S) со­хранилась — все выглядит так, как если бы прибора Т вовсе не было. И это будет верно, что бы ни поставили за «до отказа раскрытым» прибором Т. Можно поставить за ним фильтр R под каким-нибудь необычным углом — или что-угодно. Ответ будет всегда одинаков, как будто атомы шли в S' прямо из пер­вого фильтра S.

Итак, мы пришли к важному принципу: фильтр Т или любой другой с открытыми до отказа заслонками не приводит ни к каким изменениям. Надо только упомянуть одно добавочное условие. Открытый фильтр должен не только пропускать все три пучка, но и не вызывать в них неодинаковых возмущений. Например, в нем не должно быть сильного электрического поля близ одного из пучков, которого не было бы возле других. Причина заключается вот в чем: хотя это добавочное возмуще­ние может и не помешать всем атомам пройти сквозь фильтр, оно может привести к изменению фаз некоторых амплитуд. Тогда интерференция стала бы не такой, как была, и амплитуды (3.18) и (3.19) стали бы другими. Мы всегда будем предполагать, что таких добавочных возмущений нет.

Перепишем (3.18) и (3.19) в улучшенных обозначениях. Пусть i обозначает любое из трех состояний (+Т), (0Т) и (-Т); тогда уравнения можно написать так:

и

Точно так же в опыте, в котором S' заменяется совершенно произвольным фильтром R, мы имеем

S Т R Результаты будут всегда такими же, как если бы прибор Т убрали и осталось бы только

Или на математическом языке

Это и есть наш основной закон, и он справедлив всегда, если только i обозначает три базисных состояния любого фильтра. Заметьте, что в опыте (3.22) никакой особой связи между S, R и Т не было. Более того, рассуждения остались бы теми же независимо от того, какие состояния эти фильтры отбирают. Чтобы написать уравнение в общем виде без ссылок на какие-то особые состояния, отбираемые приборами S и R, обозначим через j состояние, приготовляемое первым прибором (в нашем частном примере +S), и через c — состояние, подвергаемое испытанию в конечном фильтре (в нашем примере +R). Тогда мы можем сформулировать наш основной закон (3.23) так:

где i должно пробегать по всем трем базисным состояниям некоторого определенного фильтра.

Хочется опять подчеркнуть, что мы понимаем под базисными состояниями. Они напоминают тройку состояний, которые мож­но отобрать с помощью одного из наших приборов Штерна — Герлаха. Одно условие состоит в том, что если у вас есть ба­зисное состояние, то будущее не зависит от прошлого. Другое условие — что если у вас есть полная совокупность базисных состояний, то формула (3.24) справедлива для любой сово­купности начальных и конечных состояний j и c. Но не сущест­вует никакой особой совокупности базисных состояний. Мы на­чали с рассмотрения базисных состояний по отношению к при­бору Т. В равной мере мы бы могли рассмотреть другую совокуп­ность базисных состояний — по отношению к прибору S, к прибору R и т. д. Мы обычно говорим о базисных состояниях «в каком-то представлении».

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука