Читаем Feynmann 8 полностью

Под А мы подразумеваем любое сложное расположение прибо­ров Штерна — Герлаха — с перегородками и полуперегород­ками, под всевозможными углами, с необычными электрически­ми и магнитными полями,— словом, годится все, что вам придет в голову. (Очень приятно ставить мысленные эксперименты — тогда нас не тревожат никакие заботы, возникающие при реаль­ном сооружении приборов!) Задача состоит в следующем: с какой амплитудой частица, входящая в область A в состоянии (+S), выйдет из него в состоянии (0R), так что сможет пройти через последний фильтр R? Имеется стандартное обозначение для такой амплитуды:

<0R|A|+S>.

Как обычно, это надо читать справа налево: < Конец | Через | Начало>.

Если случайно окажется, это А ничего не меняет, а просто яв­ляется открытым каналом, тогда мы пишем

<0R |1|+S>=<0R|+S>; (3.29)

эти два символа равнозначны. В более общих задачах мы можем заменить (+S) общим начальным состоянием j, а (0R) об­щим конечным состоянием c и захотеть узнать амплитуду

A|j>.

Полный анализ прибора А должен был бы дать нам амплитуду А|j> для каждой мыслимой пары состояний j и c — бес­конечное количество комбинаций! Как же сможем мы тогда дать краткое описание поведения прибора А? Это можно сде­лать следующим путем. Вообразим, что мы видоизменили прибор (3.28) так:

На самом деле это вовсе не видоизменение, потому что широко раскрытые приборы Т ничего нигде не меняют. Но они подска­зывают нам, как проанализировать проблему. Имеется опре­деленная совокупность амплитуд <i|+S> того, что атомы из S перейдут в состояние i прибора Т. Затем имеется другая совокупность амплитуд того, что состояние i (по отношению к Т), войдя в А, выйдет оттуда в виде состояния j (по отношению к Т). И наконец, имеется амплитуда того, что каждое состоя­ние j пройдет через последний фильтр в виде состояния (0R). Для каждого допустимого пути существует амплитуда вида

<0R|j><j|A|i><i|+S>,

и полная амплитуда есть сумма членов, которые можно полу­чить из всех сочетаний i и j. Нужная нам амплитуда равна

Если (О Л) и (+S) заменить общими состояниями c и j, то полу­чится выражение такого же рода; так что общий результат выглядит так:

Теперь заметьте, что правая часть (3.32) на самом деле «проще» левой части. Прибор А полностью описан девятью числами <j|А|i>, сообщающими, каков отклик А на три базисных состояния прибора Т. Как только мы узнаем эту де­вятку чисел, мы сможем управиться с любой парой входных и выходных состояний j и c, если только определим каждое из них через три амплитуды перехода в каждое из трех базисных состояний (или выхода из них). Результат опыта предсказы­вается с помощью уравнения (3.32).

В этом и состоит основной вывод квантовой механики частицы со спином 1. Каждое состояние описывается тройкой чисел — амплитудами пребывания в каждом из базисных состояний (из избранной их совокупности). Всякий прибор описывается де­вяткой чисел — амплитудами перехода в приборе из одного ба­зисного состояния в другое. Зная эти числа, можно подсчитать что угодно.

Девятка амплитуд, описывающая прибор, часто изобра­жается в виде квадратной матрицы, именуемой матрицей

<j|A|i>:

Вся математика квантовой механики является простым расши­рением этой идеи. Приведем несложный пример. Пусть име­ется прибор С, который мы хотим проанализировать, т. е. рассчитать различные <j|С|i>. Скажем, мы хотим знать, что случится в эксперименте типа

Но затем мы замечаем, что С просто состоит из двух частей: стоящих друг за другом приборов А и В. Сперва частицы про­ходят через А, а потом — через B, т. е. можно символически записать

Мы можем прибор С назвать «произведением» А и В. Допустим также, что мы уже знаем, как эти две части анализировать; таким образом, мы можем узнать матрицы А и В (по отношению к Т). Тогда наша задача решена. Мы легко найдем С|j> для любых входных и выходных состояний. Сперва мы напишем

Понимаете, почему? (Подсказка: представьте, что между А к В поставлен прибор Т.) Если мы затем рассмотрим особый случай, когда j и c также базисные состояния (прибора Т), скажем i и j, то получим

Это уравнение дает нам матрицу прибора «произведения» С через матрицы приборов А и В. Математики именуют новую матрицу <j|С|i>, образованную из двух матриц <j|В|i> и <j|А|i> в соответствии с правилом, указанным в (3.36), матричным «произведением» ВА двух матриц В и А. (Заметьте, что порядок существен, АВВА.) Итак, можно сказать, что матрица для стоящих друг за другом двух частей прибора — это матричное произведение матриц для этих двух приборов порознь (причем первый прибор стоит в произведении справа). И каждый, кто знает матричную алгебру, поймет, что речь идет просто об уравнении (3.36).

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг