Другое требование к совокупности базисных состояний (в том или ином частном представлении) заключается в том, что им положено полностью отличаться друг от друга. Под этим мы понимаем, что если имеется состояние (+T), то для него нет амплитуды перейти в состояние (О Т) или (-Т). Если i и j обозначают два базисных состояния в некотором представлении, то общие правила, которые мы обсуждали в связи с (3.8), говорят, что
<j|i>=0
для любых неравных между собой i и j. Конечно, мы знаем, что
<i|i>=1.
Эти два уравнения обычно пишут так:
где dij («символ Кронекера») — символ, равный по определению нулю при i№j и единице при i=j.
· Уравнение (3.25) не независимо от остальных законов, о которых мы упоминали. Бывает, что нас не особенно интересует математическая задача поиска наименьшей совокупности независимых аксиом, из которых все законы проистекут как следствия. Нам вполне достаточно обладать совокупностью, которая полна и по виду непротиворечива. Однако мы беремся показать, что (3.25) и (3.24) не независимы. Пусть j в (3.24) представляет одно из базисных состояний той же совокупности, что и i, скажем j-e состояние; тогда мы имеем
Но (3.25) утверждает, что <i|j> равно нулю, если только i не равно j, так что сумма обращается просто в j} и получается тождество, что говорит о том, что эти два закона не независимы.
Можно видеть, что если справедливы оба уравнения (3.25) и (3.24), то между амплитудами должно существовать еще одно соотношение. Уравнение (3.10) имело вид
Если теперь посмотреть на (3.24) и предположить, что и j, и c — это состояние (+S), то слева получится <+S|+S>, а это, конечно, равно единице, и мы должны получить (3.19)
Эти два уравнения согласуются друг с другом (для всех относительных ориентации приборов Т и S) только тогда, когда
Стало быть, для любых состояний j и c
Если бы этого не было, вероятности «не сохранились бы» и частицы «терялись бы».
Прежде чем идти дальше, соберем все три общих закона для амплитуд, т. е. (3.24) —(3.26):
В этих уравнениях i и j относятся ко всем базисным состояниям какого-то одного представления, тогда как j и c — это любое возможное состояние атома. Важно отметить, что закон II справедлив лишь тогда, когда суммирование проводится по всем базисным состояниям системы (в нашем случае по трем: +Т, 0Т, -Т). Эти законы ничего не говорят о том, что следует избирать в качестве базиса. Мы начали с прибора Т, который является опытом Штерна — Герлаха с какой-то произвольной ориентацией, но и всякая другая ориентация, скажем W, тоже подошла бы. Вместо i и j нам пришлось бы ставить другую совокупность базисных состояний, но все законы остались бы правильными; какой-то единственной совокупности не существует. Успех в квантовой механике часто определяется тем, умеете ли вы использовать тот факт, помня, что расчет можно вести из-за этого разными путями.
§ 6. Механика квантовой механики
Мы покажем вам сейчас, почему полезны эти законы. Пусть у нас есть атом в заданном состоянии (под этим мы подразумеваем, что он как-то был приготовлен), и мы хотим знать, что с ним будет в таком-то опыте. Иными словами, мы начинаем с состояния j атома и хотим знать, каковы шансы, что он пройдет через прибор, который пропускает атомы только в состоянии c. Законы говорят, что мы можем полностью описать прибор тремя комплексными числами i> — амплитудами того, что каждое из базисных состояний окажется в состоянии c, и что мы, пустив атом в прибор, можем предсказать, что произойдет, если опишем состояние атома, задав три числа <i|j>,— амплитуды того что атом из своего первоначального состояния перейдет в любое из трех базисных состояний. Это очень и очень важная идея, Рассмотрим другую иллюстрацию. Подумаем о следующей задаче. Начинаем с прибора S, затем имеется какая-то сложная мешанина, которую мы обозначаем A, а дальше стоит прибор R: