Читаем Feynmann 9 полностью

где nх, ny, nzтри целых числа. Вместо того чтобы ставить при х, у и z их номера, будем просто писать х, у, z, имея в виду, что они принимают лишь такие значения, которые бывают у то­чек решетки. Итак, базисное состояние изображается символом | электрон в х, у, z>, а амплитуда того, что электрон в неко­тором состоянии |y> окажется в этом базисном состоянии, есть

С (х, у, z)=< электрон в х, у, z |y>.

Как и прежде, амплитуды С (х, у, z) могут меняться во вре­мени. При наших предположениях гамильтоновы уравнения обязаны выглядеть следующим образом:

Хоть это и выглядит громоздко, но вы сразу, конечно, поймете, откуда взялось каждое слагаемое.

Опять попробуем найти стационарное состояние, в котором все С меняются со временем одинаково. И снова решение есть экспонента

Если вы подставите это в (11.22), то увидите, что оно вполне подойдет, если только энергия Е будет связана с kx, ky и kz следующим образом:

Теперь энергия зависит от трех волновых чисел kx, ky, kz, которые, кстати, есть компоненты трехмерного вектора k.

И действительно, (11.23) можно переписать в векторных обо­значениях:

Амплитуда меняется как комплексная плоская волна, которая движется в трехмерном пространстве в направлении k с волно­вым числом k=(k2x+k2y+ k2z)1/2.

Энергия, связываемая с этими стационарными состояниями, зависит от трех компонент k сложным образом, подчиняясь уравнению (11.24). Характер изменения Е зависит от относи­тельных знаков и величин Ах,Ау и Аz. Если вся эта тройка положительна и если нас интересуют лишь маленькие k, то зависимость оказывается сравнительно простой.

Разлагая косинус, как и раньше [см. (11.16)], мы теперь придем к

В простой кубической решетке с расстоянием а между узлами следует ожидать, что и Ах, и Аy, и Аг будут все равны друг другу (скажем, равны А), так что получилось бы

или

А это как раз совпадает с (11.16). Повторяя те же рассуждения, что и тогда, мы пришли бы к заключению, что электронный пакет в трех измерениях (составленный путем суперпозиции множества состояний с почти одинаковыми энергиями) также движется на манер классической частицы, обладающей некото­рой эффективной массой.

В кристалле не с кубической, а с более низкой симметрией (или даже в кубическом кристалле, но таком, в котором состоя­ние электрона около атома несимметрично) три коэффициента Ах, Аy и Az различны. Тогда «эффективная масса» элект­рона, сосредоточенного в узкой области, зависит от направле­ния его движения. Может, например, оказаться, что у него раз­ная инерция при движении в направлении х и при движении в направлении у. (Детали такого положения вещей иногда описываются с помощью «тензора эффективной массы».)

§ 5. Другие состояния в решетке

Согласно (11.24), состояния электрона, о которых мы гово­рили, могут обладать энергиями только в некоторой энергети­ческой «полосе», простирающейся от наименьшей энергии

Е0-2яуг)

до наибольшей

E0+2(Ax+Ay+Az).

Другие энергии тоже возможны, но они принадлежат к другому классу состояний электрона. Для тех состояний, о которых говорилось раньше, мы выбирали такие базисные состояния, когда электрон в атоме кристалла находился в некотором определенном состоянии, скажем в состоянии наинизшей энергии.

Если у вас есть атом в пустом пространстве и вы добавляете к нему электрон, чтобы получился ион, то этот ион можно обра­зовать многими способами. Электрон может расположиться так, чтобы образовать состояние наинизшей энергии, или так, чтобы образовать то или иное из многих возможных «возбуж­денных состояний» иона, каждое с определенной энергией, ко­торая превосходит наинизшее значение. То же может случиться и в кристалле. Допустим, что энергия Е0, которой мы пользо­вались выше, соответствует базисным состояниям, представляю­щим собой ионы с наинизшей возможной энергией. Но можно также вообразить новую совокупность базисных состояний, в которых электрон по-иному располагается возле n-го атома: он образует одно из возбужденных состояний иона, так что энергия Е0 теперь уже становится чуть повыше. Как и раньше, имеется некоторая амплитуда А (отличная от прежней) того, что электрон перепрыгнет из своего возбужденного состояния близ одного атома в такое же возбужденное состояние подле сосед­него атома. И весь анализ проходит, как раньше; мы обнаружим полосу возможных энергий, сосредоточенных вокруг некото­рой высшей энергии. Вообще говоря, таких полос может быть много и каждая будет отвечать своему уровню возбуждения.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука