Для определенности вернемся к одномерному случаю и допустим, что атом номер «нуль» — это атом «загрязнения», «примеси» и у него совсем не такая энергия
Исходим из системы уравнений, похожей на (11.6), за одним исключением: уравнение при
Конечно, будут и другие уравнения при |
Нам полагалось бы на самом деле для общности писать разные
Уравнение (11.10) по-прежнему будет служить решением Для всех уравнений, кроме уравнения для атома «нуль» (для него оно не годится). Нам нужно другое решение; соорудим его так. Уравнение (11.10) представляет волну, бегущую в положительном направлении
Самое общее решение уравнения (11.6) представляло бы собой сочетание волны вперед и волны назад:
Это решение представляет комплексную волну с амплитудой
Теперь бросим взгляд на систему уравнений нашей новой задачи: на (11.28) плюс такие же уравнения для остальных атомов. Уравнения, куда входят
Физический смысл этого таков: «падающая» волна с амплитудой a приближается к атому «нуль» (или «рассеивателю») слева, а «рассеянная» или «отраженная» волна с амплитудой b бежит обратно, т. е. налево. Не теряя общности, можно положить амплитуду a падающей волны равной единице. Тогда амплитуда b будет, вообще говоря, комплексным числом.
То же самое можно сказать и о решениях
Здесь g — амплитуда волны, бегущей направо, а d — амплитуда волны, приходящей справа. Мы хотим рассмотреть такой
Положение, о котором идет речь, иллюстрируется фиг. 11.6.
Используя формулы (11.32) для
Вспомните, что (11.30) выражает
тогда из первого уравнения получится
a0=1+b, (11.34)
а из третьего
a0=g, (11.35)
что согласуется друг с другом только тогда, когда
g=1+b. (11.36)
Это уравнение сообщает нам, что прошедшая волна (g) — это просто исходная падающая волна (1) плюс добавочная волна (b), равная отраженной. Это не всегда так, но при рассеянии на одном только атоме оказывается, что это так. Если бы у вас была целая группа атомов примеси, то величина, добавляемая к волне, бегущей вперед, не обязательно вышла бы такой же, как у отраженной волны.
Амплитуду b отраженной волны мы можем получить из среднего из уравнений (11.33); окажется, что
Мы получили полное решение для решетки с одним необычным
атомом.
Вас могло удивить, отчего это проходящая волна оказалась «выше», чем падавшая, если судить по уравнению (11.34). Но вспомните, что b и g
|b|2+|g|2=1. (11.38)
Попробуйте показать, что в нашем решении так оно и есть.
§ 7. Захват нерегулярностями решетки