Зарождающиеся пузырьки не сразу отрываются ото дна: пока их объем невелик, их удерживают силы поверхностного натяжения. Чтобы оторваться и принять сферическую форму, он должен совершить работу по преодолению этих сил, тем самым увеличив свою поверхностную энергию (см. главу 6). Эта работа совершается благодаря понижению потенциальной энергии в поле тяжести Земли окружающей пузырек жидкости. Приравнивая для оценки поверхностную энергию пузырька к изменению потенциальной энергии жидкости, находим:
Отсюда можно найти критический размер, при котором пузырек покидает дно:
Можно оценить и время отрыва пузырька ото дна: расстояние порядка своего радиуса
2.
Как только температура воды становится достаточно высока, на дефектах дна чайника возникают пузырьки. Благодаря действию сил поверхностного натяжения, пока их объем невелик, пузырьки остаются у дна и, заполняясь паром, постепенно растутДавайте проследуем за пузырьком во время его восхождения. Поднимаясь, он попадает в более холодные слои воды. В самом деле, температура в чайнике распределена вовсе не однородно. Вода не очень хороший проводник тепла. Торопясь выпить чаю, мы подвергаем чайник интенсивному нагреванию, и, когда температура дна чайника уже превышает 100 °C, верхние слои воды еще остаются сравнительно холодными. Поэтому, по мере того как пузырек поднимается, пар внутри него охлаждается и частично конденсируется обратно в воду. Но главное – падает давление остающегося в пузырьке насыщенного пара, и он, не в состоянии противостоять давлению жидкости и Лапласа, схлопывается (см. врезку). Если же он содержал заметное количество воздуха, то по крайней мере сильно сжимается. И лишь когда начинается кипение, то есть образование пузырьков во всем объеме воды, их радиус начинает с набором высоты возрастать (см. главу 15, «Вода при кипении чайника перегревается»).
3.
Пузырек водяного пара – до начала кипения. Молекулы водяного пара внутри него находятся в беспорядочном тепловом движении и, ударяясь о поверхность, обеспечивают давление. Именно оно и уравновешивает суммарное давление Лапласа, атмосферы и водяного столба (красные стрелки). Поднимаясь вверх, пузырек достигает более холодных областей, где водяной пар охлаждается, частично конденсируется и пузырек схлопываетсяКак говорилось ранее, возникновение пузырьков сопровождается характерным шумом. Какое физическое явление лежит в его основе? Представляется сомнительным, что само по себе всплывание пузырька в жидкости приводит к возникновению звуковой волны; так, например, в воздухе звуковые волны от движущегося тела слышны только при достижении скорости пули (например, летящий теннисный мяч не издает звук). С другой стороны, два описанных выше явления – отрыв пузырьков ото дна, а затем их схлопывание – кажутся хорошими кандидатами: они действительно возбуждают колебания внутри жидкости. А какова их частота? Простые вычисления показывают, что пузырек радиуса 1 мм отделяется в течение примерно 0,01 с, что соответствует частоте колебаний около 100 Гц. Затем он схлопывается приблизительно за 1 мс, что соответствует частотам порядка 1000 Гц, то есть более высокому звуку. Эта оценка подтверждается простым наблюдением: незадолго до начала кипения, когда пузырьки перестают схлопываться, внимательное ухо услышит, что испускаемый звук, больше не связанный с отрывом пузырьков ото дна, становится более низким.
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное