Для разработки квантового компьютера требуется высочайший уровень технологий. Практическое создание необходимых для этого наноструктур подразумевает, что мы знаем не только то, как их делать, но и как их увидеть! Назовем четыре различных прибора, используемых для этого.
• Растровый электронный микроскоп, или РЭМ (илл. 12), дает трехмерные изображения нанообъектов с эффектом перспективы, как, например, на фотографии. Пучок электронов при сканировании проходит по поверхности образца, которая в ответ отражает электроны, излучает другие электроны, рентгеновские лучи, свет. Все эти частицы и волны, являющиеся носителями информации о материале и свойствах поверхности образца, анализируются микроскопом. Атомного разрешения РЭМ не достигает.
• Просвечивающий (трансмиссионный) электронный микроскоп, или ПЭМ (илл. 13). Он куда более громоздкий, чем РЭМ, зато способен достичь атомного разрешения. В этом случае для получения изображения анализируется пучок электронов, прошедший сквозь образец. Поэтому посредством просвечивающего микроскопа можно изучать только тонкие объекты. Если объект недостаточно тонок, его бы пришлось разрезать на пластины! Для нанообъектов эта деликатная операция не требуется.
• Сканирующий туннельный микроскоп, или СТМ. Это изобретение немца Герда Биннига и швейцарца Генриха Рорера, созданное в лаборатории IBM в Цюрихе (см. главу 24, «На берегу Цюрихского озера»), принесло им Нобелевскую премию в 1986 году, спустя пять лет после открытия. Это действительно удивительное изобретение, поскольку устройство способно «ощупывать» атомы с помощью иглы (илл. 14). На самом деле игла атома не касается: она приближается к нему на расстояние около 1 нм; при этом через зазор начинает течь туннельный ток (см. главу 25, «Квантование магнитного потока в сверхпроводящем кольце»). Расстояние от острия до атома должно выдерживаться с точностью до 0,1 нм, что означает, помимо прочего, что последнее должно быть надежно защищено от малейших колебаний. СТМ позволяет получить значительное атомное разрешение, однако он может передавать изображения только с самой поверхности твердого тела, следующий атомный слой остается невидимым (илл. 15). Кроме того, исследуемое вещество должно быть проводящим.
• Сканирующий атомно-силовой микроскоп, или АСМ. Подобно туннельному микроскопу, он «ощупывает» поверхности твердых тел с помощью иглы. Расстояние от кончика иглы до поверхности измеряется не по величине туннельного тока, а по силе, с которой поверхность действует на иглу. Последнюю определяют с помощью отклонения упругой консоли, которое регистрируется лазерным лучом. Поэтому вещество не обязательно должно быть проводящим (см. пример получаемого изображения в главе 19, «Полимеры»).
12.
Электронный сканирующий микроскоп. На экране можно увидеть пример изображения13.
Просвечивающий электронный микроскоп14.
Схема действия туннельного микроскопа. Игла удерживается пьезоэлектрической трубкой на расстоянии приблизительно 1 нм от исследуемого образца. Туннельный ток усиливается и затем подвергается анализу15.
Пример изображения, полученного с помощью туннельного микроскопа. Это поверхность квазикристалла (см. главу 9, «Квазикристаллы»), которая обладает локальной симметрией пятого порядкаПрихоти электронов в наномире
Наномир – королевство, где царят необычные физические законы. Это законы квантовой механики, и особенно они проявляют себя при низких температурах. Мы знаем, что энергия атома квантована, то есть может принимать только определенные значения, образующие дискретный набор. Оказывается, что при очень низкой температуре квантованным также является и сопротивление
Правило этого квантования оказывается особенно простым, если говорить о величине, обратной сопротивлению, 1/
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное