Квантовый провод представляет собой очень узкий проводящий канал (илл. 16), состоящий из кристаллического проводника без дефектов, диаметр которого сопоставим с длиной волны де Бройля (см. главу 22, «Волна де Бройля и уравнение Шрёдингера»). Узость канала обуславливает волновое поведение электронов, что проявляется квантованием их поперечного движения в проводе. В классическом проводнике траекторию движения электрона под воздействием разности потенциалов можно себе представлять как изломанную линию от одной примеси, на которой электрон рассеялся, до другой. Такое движение называют диффузным (илл. 17a). В квантовом же проводе распространение электрона является «баллистическим» (илл. 17b) и больше похоже на распространение электромагнитной волны в волноводе (см. главу 2, «Распространение звуковых волн»). Как только наименьший из размеров проводника сравнивается с дебройлевской длиной волны, электрон оказывается как бы «запертым» в этом направлении и ведет себя согласно законам квантовой механики. Можно сказать, что рассматриваемый нанопроводник становится «квантовой ямой», движение электрона в которой квантуется. Поскольку система находится вне равновесия, то речь идет не о квантовых состояниях, а о модах, по аналогии с модами волноводов. Изменяя электрический потенциал затвора (не показано на илл. 17), можно пропустить одну, две, три или более мод. Каждая мода вносит свой вклад в общую проводимость, определяемую суммой вкладов всех мод.
16.
Изображение кремниевого квантового провода, полученное атомно-силовым микроскопом (АСМ) (экспериментальное устройство для измерения сопротивления). Тонкая часть провода имеет длину 1,5 мкмВеличина дебройлевской длины волны существенно зависит от концентрации электронов в металле. Для нормального металла она оказывается порядка нескольких ангстремов, то есть атомного масштаба. В полупроводниках, однако, эта величина может оказаться намного большей, и квантование движения электронов в таких нанопроводниках может существенно изменить их свойства по сравнению с массивными образцами, выполненными из того же материала. Например, квантование поперечного движения лишь в одном из направлений позволяет создать новый объект – двумерный электронный газ, который служит элементарным строительным блоком для современных электронных приборов.
Точечные контакты между полупроводниками обладают свойствами, сходными с квантовыми проводами. Сопротивление таких контактов можно варьировать при помощи изменения напряжения на затворе. В результате при низких температурах кондактанс изменяется ступеньками, величина которых кратна 2e2
/h.17.
Движение электрона под действием приложенной разности потенциалов по проводу в зависимости от его шириныa.
Классический проводник. Траекторию электрона можно схематично представить как последовательность отрезков, соединяющих одну примесь с другой. Такое движение электрона называется диффузным.b.
Квантовый провод. Путь электрона можно представить в виде серии отражений от стенок.c.
Точечный квантовый контактЯрким проявлением квантования сопротивления является квантовый эффект Холла. В 1879 году американский физик Эдвин Холл (1855–1938) обнаружил новое явление. При прохождении тока через помещенный в магнитное поле
Эффект, обнаруженный Холлом, имеет чисто классическую природу, за исключением случаев, когда выполняется три условия: низкая температура (в несколько кельвинов); сильное магнитное поле (около 20 Тл); и, наконец, движение электронов имеет двумерный характер. С ростом магнитного поля холловское сопротивление растет не линейно, а скачкообразно (илл. 18b). При этом значения его обратной величины – кондактанса – являются целыми кратными e2
/h.А как создают такой необычный объект, как двумерный электронный газ? Метод, используемый в первом эксперименте по квантовому эффекту Холла, заключался в приложении сильного положительного потенциала (с помощью «затвора», вездесущего в нанофизике объекта) к поверхности кремния.
Квантовый эффект Холла, обнаруженный в 1980 году немецким ученым Клаусом фон Клитцингом в Лаборатории сильных магнитных полей в Гренобле, стал огромным достижением европейской науки. В 1985 году фон Клитцинг за это открытие получил Нобелевскую премию по физике.
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное