Читаем Физика пространства - времени полностью

Если так, то не ощутит ли наш удалённый приёмник мгновенного уменьшения силы гравитационного притяжения в тот момент, когда излучение распространяется через ящик? Разве масса покоя излучения не равна нулю, тогда как масса покоя ящика, испытавшего отдачу, стала меньше первоначальной массы покоя 𝑀 системы? Не стала ли, таким образом, полная тяготеющая масса меньше, чем вначале, вследствие протекающего процесса переноса? Нет! Масса покоя системы — и мы повторим это — не равна сумме масс покоя её отдельных частей. Вместо этого она равна абсолютной величине полного 4-вектора энергии-импульса системы. Но ни полный импульс системы (равный в нашем случае нулю!), ни её полная энергия ни в какой момент времени не изменяются: ведь наша система изолирована. Поэтому не меняется и абсолютная величина 𝑀 полного 4-вектора энергии-импульса (рис. 107). А это в конце концов значит, что не изменяется и гравитационное притяжение.

Во всём этом анализе была, однако, одна небольшая подтасовка: ящик в действительности не может двигаться как твёрдое тело. Если бы он мог так двигаться, то информация об отделении излучения от левой стенки могла бы быть получена по наблюдению движения противоположной — правой — стенки задолго до прихода к ней самого излучения, т.е. эта информация была бы передана с большей скоростью, чем распространяется свет! На самом же деле толчок отдачи, вызванный генерацией излучения, распространяется по боковым стенкам ящика в виде волны колебания, т.е. со скоростью звука, и эта волна достигает противоположного конца намного позднее, чем туда приходит излучение. Тем временем акт поглощения излучения в правом конце ящика возбуждает другую волну колебания, которая движется назад по боковым стенкам ящика. Добавить к нашей задаче исследование колебаний ящика значило бы усложнить анализ, но не изменить сколько-нибудь существенно полученные выше выводы.

68*. Устойчивость фотона

Покажите, что изолированный фотон не может раздробиться на два фотона, распространяющихся в направлениях, не совпадающих с направлением распространения первоначального фотона. (Указание. Используйте законы сохранения импульса и энергии и тот факт, что третья сторона треугольника короче, чем сумма двух других сторон. О каком треугольнике идёт речь?) ▼

69*. Давление света

а) Вычислите полную силу, с которой действует луч одноваттного фонарика.

б) Основываясь на значении солнечной постоянной (1,4 квт/м²; см. упражнение 62), вычислите величину давления солнечного света на спутник Земли. Рассмотрите как отражающие, так и поглощающие поверхности, а также «реальные» поверхности (с частичным поглощением). Почему несуществен цвет падающего света?

в) Частицы, размеры которых меньше некоторых критических, могут быть вытолкнуты из солнечной системы давлением солнечного света. Критические размеры определяются равенством выталкивающей силы и силы гравитационного притяжения частиц Солнцем. Оцените эти размеры, сделав все необходимые предположения. Перечислите в своём ответе сделанные предположения. Зависят ли полученные критические размеры от расстояния частиц от Солнца? ▼

70*. Эффект Комптона

Рис. 108. Комптоновское рассеяние фотона на электроне.

Рис. 109. Диаграмма сохранения импульса при комптоновском рассеянии. Вспомните закон косинусов: 𝑃² = 𝑝² + 𝑝² - 2𝑝𝑝 cos φ .

В 1923 г. Артур Комптон показал, что рассеянные на свободных электронах рентгеновские лучи (фотоны) имеют после рассеяния меньшую энергию, чем до рассеяния 1). Этот эксперимент расценивается многими как самое ценное достижение физического опыта 20-х годов. Рассмотрим столкновение фотона с энергией 𝐸ф и электрона, который первоначально покоился; определим энергию фотона после рассеяния под углом φ к направлению своего падения. Угол φ носит название угла рассеяния. Мы примем следующие обозначения:

1) A. H. Compton, Physical Review, 22, 411 (1923).

До рассеяния

После рассеяния

Электрон

𝐸, 𝑃

𝐸

,

𝑃

Фотон

𝐸

ф

,

𝑝

𝐸

ф

,

𝑝

Не пользуйтесь в своих рассуждениях ни ℎ, ни ν, ни β, ни θ, ни λ, а только одними законами сохранения импульса и энергии да уравнениями

𝐸²

-

𝑃²

=

𝑚²

для электрона,

𝐸

ф

²

-

𝑝²

=

0

для фотона.

Начертите график выраженной в единицах энергии покоя электрона энергии рассеянного фотона в функции угла рассеяния φ для того случая, когда энергия падающего фотона вдвое превышает энергию покоя электрона (2⋅0,511 Мэв).

Рис. 110. Результаты эксперимента Комптона, в котором фотоны рассеивались на электронах в графитовой мишени.

При расположении детектора на всех углах, кроме φ=0, наблюдаются фотоны, рассеянные с потерей энергии (электроны испытывают отдачу), наряду с теми фотонами, которые почти или вообще не потеряли энергии (отдачу испытывает система электрон + атом как целое)

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное