Читаем Физика пространства - времени полностью

Чтобы было проще понять этот эксперимент, возвратимся к идее покоящегося атома железа и атома-близнеца, подвергнутого тепловому возбуждению при температуре 𝑇. Предскажите относительное уменьшение числа внутренних колебаний в горячем образце за лабораторную секунду и сравните предсказание с данными опыта.

Рис. 116. Сравнение хода покоящихся ядерных часов с ходом ядерных часов, совершающих тепловое движение.

Обсуждение. На рис. 116 дано сравнение числа эффективных «тик-так» двух «внутренних ядерных часов» за интервал лабораторного времени 𝑑𝑡. Имейте в виду, что скорость атомов при тепловом возбуждении составляет около 10⁻⁵ от скорости света. Как можно приближённо представить коэффициент расхождения частот 1-√1-β²? Насколько уменьшается число «тик-так» горячего атома по сравнению с холодным, приходящееся на интервал лабораторного времени 𝑑𝑡? Покажите, что накапливающийся дефект числа «тик-так» для горячего атома составляет в 1 сек


ν₀


β²

2



средн

(1

сек

)

,


где через (β²)средн обозначена «средняя квадратичная величина скорости атома» (в единицах скорости света). Заметьте, что средняя кинетическая энергия теплового возбуждения горячего атома железа (масса 𝑚𝙵𝚎=57𝑚протон) Даётся классической кинетической теорией газов в виде


1

2

𝑚

𝙵𝚎

(β²)

средн

²

=

3

2

𝑘𝑇

.


Здесь 𝑘 — постоянная Больцмана — множитель перехода между двумя единицами энергии, градусами и джоулями (или градусами и эргами); 𝑘=1,38⋅10⁻²³ дж/град (𝑘=1,38⋅10⁻¹⁶ эрг/град). Как согласуется результат эксперимента Паунда и Ребки с результатом вашего исчисления? ▼

Д. СТОЛКНОВЕНИЯ


90. Симметричное упругое столкновение

При упругом столкновении частицы с массой 𝑚 и кинетической энергией 𝑇 с частицей той же массы, находившейся в состоянии покоя, направления скоростей частиц после столкновения образуют разные углы с первоначальным направлением движения первой частицы, если энергии частиц после рассеяния различны. Однако ньютоновская механика предсказывает, что угол α между векторами скорости частиц после рассеяния всегда равен 90°. Иное предсказание делает механика теории относительности: согласно ей этот угол должен быть меньше 90° (см. упражнение 40). Вопрос: насколько меньше 90° должен быть угол α в простейшем случае симметричного упругого столкновения, когда частицы после рассеяния обладают одинаковыми энергиями и разлетаются под одинаковыми углами к первоначальному направлению движения первой частицы (рис. 117)? Определите угол, исходя лишь из законов сохранения импульса и энергии в релятивистской форме.

Рис. 117. Симметричное упругое столкновение тождественных частиц.

Обсуждение. Чему равна полная энергия системы до столкновения? Какой должна быть поэтому полная энергия каждой из двух частиц после столкновения? Чему должен быть поэтому равен импульс частицы? (См. введение к упражнениям на стр. 179, где сказано о взаимосвязи между импульсом и энергией и о том, почему следует избегать всякого упоминания или использования скорости в задачах, относящихся лишь к импульсу и энергии). Каков был начальный импульс системы? Покажите, что искомый угол определяется выражением


cos²

α

2

=

𝑇+2𝑚

𝑇+4𝑚

.


Отсюда с помощью тригонометрического тождества


cos²

α

2

=

1

2

(1+cos α)


получите выражение


cos α

=

𝑇

𝑇+4𝑚

.


(124)


Чему равен полный угол α: 1) для ньютоновского упругого столкновения при малой скорости и 2) для ультрарелятивистского столкновения с очень большой величиной 𝑇? ▼


91. Давид и Голиаф — подробный пример

Какой минимальной кинетической энергией должен обладать электрон для того, чтобы передать половину своей кинетической энергии первоначально покоившемуся протону при упругом лобовом соударении? Проведите свои вычисления таким образом, чтобы в конце концов прийти к одному-единственному уравнению, решая которое можно (и должно) определить одну безразмерную неизвестную величину 𝑇𝑒/𝑚𝑝, где 𝑇𝑒 — кинетическая энергия налетающего электрона, а 𝑚𝑝 — масса покоя протона. Определите величину 𝑇𝑒,обычн в Мэв, приближённо принимая 𝑚𝑝 𝑐²≈1000 Мэв. (Если вы будете решать это уравнение приближённо, дайте оценку погрешности).

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное