Читаем Физика пространства - времени полностью

а в вертикальном направлении (𝑧) она вдвое больше и имеет противоположный знак: +18⋅10⁻²⁴ м⁻². Это приливное воздействие мало, но это реальный и наблюдаемый эффект. Кроме того, это локально определённая величина, а Эйнштейн как раз говорил, что мы должны сконцентрировать своё внимание на локально определённых величинах, если хотим найти простое описание природы.

Эйнштейн говорит к тому же, что это «приливное воздействие» не требует для своего объяснения какой-то таинственной силы тяготения, распространяющейся через пространство-время и дополняющей структуру последнего. Напротив, «приливное воздействие» может и должно быть описано на языке геометрии самого пространства-времени как кривизна пространства-времени. Хотя Эйнштейн говорил о 4-мерном пространстве-времени, его понятие кривизны можно проиллюстрировать с помощью 2-мерной геометрии на поверхности сферы (рис. 137).

Рис. 137. Путешественники 𝐴 и 𝐵, начав двигаться параллельно друг другу и не отклоняясь ни влево, ни вправо, обнаруживают тем не менее, что приближаются друг к другу, пройдя некоторое расстояние. Истолкование 1: действует какая-то таинственная сила «тяготения». Истолкование 2: движение происходит на искривлённой поверхности.

Притча о двух путешественниках

Первый путешественник 𝐴 стоит на экваторе, готовый отправиться прямо на север. Его приятель 𝐵, стоявший плечом к плечу с 𝐴, поворачивается на 90° и направляется прямо на восток, проходит расстояние (Δ𝑥)₀=10 км по экватору, снова поворачивается на 90° и останавливается лицом к северу. После этого оба, и 𝐴, и 𝐴, начинают идти к северу и проходят по 200 км (рис. 137). Сначала их пути строго параллельны; более того, оба путешественника уверены, что каждый из них абсолютно точно выдерживает взятое им направление. Они не отклоняются ни вправо, ни влево. И тем не менее судья, посланный измерить расстояние между ними после того, как они прошли по 200 км, обнаруживает, что оно стало меньше первоначальных 10 км. Почему? Мы это прекрасно знаем: дело в том, что поверхность Земли искривлённая. Путешественники встретятся в конце концов на Северном полюсе. Обозначим широту через φ (φ=0°, cos φ=1 на экваторе, φ=90°, cos φ=0 на Северном полюсе). Тогда удаление одного путешественника от другого на некоторой промежуточной широте равно 10 км⋅cos φ. Для близких к экватору широт достаточно взять первые два члена разложения функции косинуса по степеням угла φ. Тогда мы получим для расстояния между путешественниками выражение Δ𝑥 = (Δ𝑥)₀ ⋅

⎝ 1 -

φ²

2

⎠ .

При этом угол φ определяется как отношение длины дуги 𝑠, пройденной с юга на север, к радиусу 𝑅 земного шара: φ=𝑠/𝑅. Таким образом, уменьшение первоначального расстояния (Δ𝑥)₀ определяется выражением (Δ𝑥)₀ - (Δ𝑥) = (Δ𝑥)₀ ⋅

φ²

2 = (Δ𝑥)₀ ⋅

𝑠²

2𝑅² .

Если сначала это расстояние было равно (Δ𝑥)₀=10 км, длина 𝑠=200 км, а радиус 𝑅=6371 км, то сокращение расстояния должно составить 0,005 км, или 5 м. Эта величина производит впечатление, однако не своим численным значением (что значат 5 м по сравнению с 10 000 м?), а принципиальным фактом существования такого расхождения. Ведь никакого расхождения не было бы, если бы охваченная движением путешественников область 10 км⋅200 км была плоской. Существование этого расхождения — самое непосредственное свидетельство того, что используемая при описании 2-мерной поверхности земного шара геометрия должна быть геометрией искривлённого пространства.

Измерение кривизны по изменению удаления друг от друга двух первоначально параллельных идеальных линий1)

1) Здесь большей частью под «идеальными линиями» и «мировыми линиями» авторы понимают не любые мировые линии, а экстремальные, т.е. геодезические линии. - Прим. перев.

Как же можно адекватно описать и количественно измерить эту кривизну? Как можно прийти к числу, не зависящему от длины пути и расстояния между путешественниками,— к числу, описывающему саму локальную кривизну, а не путешественников? Заметим сначала, что расстояние между 𝐴 и 𝐵 уменьшается в ускоряющемся темпе, так что целесообразно говорить именно об этом ускорении. Как можно оценить его величину? Воспользуемся тем фактом, что относительное ускорение есть скорость изменения относительной скорости, а относительная скорость в свою очередь есть скорость изменения расстояния. Поэтому начнём именно с расстояния (удаления) Δ𝑥 = (Δ𝑥)₀ - (Δ𝑥)₀

𝑠²

2𝑅² .

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное