Читаем Физика пространства - времени полностью

Случай временноподобного интервала. Событие 𝐻 расположено внутри светового конуса будущего с вершиной в событии 𝐺 в некоторой инерциальной системе отсчёта. Поэтому из 𝐺 в 𝐻 может попасть частица, движущаяся равномерно со скоростью, меньшей скорости света с точки зрения данной системы отсчёта. Но тот факт, что частица может непосредственно перейти из 𝐺 в 𝐻, никак не связан с конкретным выбором инерциальной системы. Поэтому событие 𝐺 предшествует событию 𝐻 в любой инерциальной системе, что и требовалось доказать.

Случай пространственноподобного интервала. Эта возможность исключается; интервал между двумя рассматриваемыми здесь событиями может быть лишь светоподобным или временноподобным, и не иначе. Поэтому теперь требуется доказать, что два события, разделённые пространственноподобным интервалом, не имеют универсального порядка во времени,— такой порядок во времени существует лишь для пар событий, интервалы между которыми являются светоподобными или временноподобными. Рассмотрим для примера в лабораторной системе отсчёта два события, разности координат которых равны 𝑥𝐻-𝑥𝐺=900 м и 𝑡𝐻-𝑡𝐺=540 м. Тогда пространственноподобный интервал между ними составляет


(

900

м

)

²

-

(

540

м

)

²

⎞½

=

720

м


Если рассматривать эти же события в системе отсчёта, быстро движущейся вправо, то они окажутся ближе друг к другу во времени, но величина интервала останется без изменения. В какой бы системе отсчёта ни проводились измерения, разности координат будут оставаться на гиперболе


(𝑥

𝐻

-𝑥

𝐺

-

(𝑡

𝐻

-𝑡

𝐺

=

(720

м


(рис. 139). Когда новая система отсчёта достигнет достаточно большой скорости относительно лабораторной системы (такова, например, система 𝐽), то событие 𝐻 станет наблюдаться до события 𝐺. Такая ситуация имеет место для любой пары событий, разделённых пространственноподобным интервалом, и её можно описать с помощью гиперболы, подобной гиперболе на рис. 139. Короче говоря, если события 𝐺 и 𝐻 разделены пространственноподобным интервалом, то при выборе системы наблюдателя, движущейся достаточно быстро вправо или влево относительно лабораторной системы отсчёта, можно «сделать» событие 𝐺 сколь угодно более ранним или сколь угодно более поздним по сравнению с событием 𝐻.

Рис. 139. Иллюстрация того, как выбор системы отсчёта сказывается на величине разностей пространственных и временных координат двух событий 𝐺 и 𝐻. Через 𝐿 обозначена лабораторная система отсчёта; система 𝐴 «медленно» движется вправо относительно лабораторной системы отсчёта; последовательность 𝐵, 𝐶, 𝐷, … изображает системы отсчёта, движущиеся со всё большими и большими скоростями вправо относительно лабораторной системы. Система 𝐽 такая, в которой разности координат вновь оказываются целочисленными. ▲

6. Расширяющаяся Вселенная

а) Средний чертёж на рис. 35 даёт для собственного времени, прошедшего между двумя вспышками, выражение


Δ

τ

=

(

Δ

𝑡)²-(

Δ

𝑥)²

=

(

Δ

𝑡)²-(β

Δ

𝑡)²

=

Δ

𝑡

1-β²

.


Из правого чертежа на том же рисунке следует выражение для времени, прошедшего между приёмом двух последовательных сигналов:


Δ

𝑡

приём

=

Δ

𝑡

+

β

Δ

𝑡

=

Δ

𝑡

(1+β)

.


Исключим из первого уравнения Δ𝑡 с помощью второго и найдём скорость удаления осколков β:


β

=

(Δ𝑡приём)²-(Δτ)²

(Δ𝑡приём)²+(Δτ)²

.


Расстояние между осколком, на котором летит наблюдатель, и другим осколком бомбы, который он наблюдает, равняется времени, прошедшему с момента взрыва, умноженному на скорость удаления этих осколков друг от друга.

б) Пользуясь предыдущей формулой, определите скорость удаления звезды. Приравняйте Δτ собственному периоду световой волны, а Δ𝑡приём — наблюдаемому периоду для света, приходящего от удалённого источника. Если Вселенная когда-то (𝑡=0) взорвалась, а её первоначальный объём был ничтожно мал, то теперь, в более поздний момент времени 𝑇, расстояние до каждой звезды (или галактики) будет равно β𝑇 (для вдвое быстрее удаляющейся галактики и расстояние будет вдвое большим). Расстояние же до галактики в тот более ранний момент, когда она испустила принятый нами теперь свет, было равно β𝑇/(1+β). Коэффициент красного смещения Δ𝑡приём/Δτ превосходит 3 для самых быстро удаляющихся известных нам сейчас источников (так называемых квазаров — квазизвёздных объектов), однако расстояния до них неизвестны. В настоящее время мы умеем определять независимыми способами расстояния лишь для источников, удаляющихся от нас со скоростями β=0,2 и меньшими. Исходя из этих расстояний и наблюдаемого красного смещения, можно определить 𝑇 равным от 10¹⁰ до 1,4⋅10¹⁰ лет. ▲

7. Собственное время и связь

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука