Читаем Физика пространства - времени полностью

Обозначим через Δ𝑥' проекцию метрового стержня на ось 𝑥' в системе отсчёта ракеты, а через Δ𝑦' — аналогичную проекцию на ось 𝑦'. Значит, тангенс угла φ' равен tg φ'=Δ𝑥'/Δ𝑦'. В лабораторной системе отсчёта 𝑦-проекция будет оставаться равной прежней 𝑦-проекции в системе ракеты, но 𝑥проекция подвергнется лоренцеву сокращению, согласно выводам упражнения 9. Мы получим


Δ

𝑦

=

Δ

𝑦'

,


где


Δ

𝑦

=

(1

м

)

sin φ'

,


и


Δ

𝑥

=

Δ

𝑥'

1-β

𝑟

²

,


где


Δ

𝑥'

=

(1

м

)

cos φ'

,


Отсюда легко вычислить величину тангенса искомого угла в лабораторной системе отсчёта


tg φ

=

Δ𝑦

Δ𝑥

=

tg φ'

√1-β𝑟²

.


Длина метрового стержня, измеренная в лабораторной системе отсчёта, равна


𝐿

=

(

Δ

𝑥)²+(

Δ

𝑦)²

.


Подставляя сюда полученные выше значения Δ𝑥 и Δ𝑦, найдём


𝐿

=

1-β

𝑟

²

cos²φ'


м

.


Рис. 142. Электрические силовые линии заряженной частицы в системе отсчёта ракеты.

Рис. 143. Электрические силовые линии заряженной частицы в лабораторной системе отсчёта.

Мысленно заменяя электрические силовые линии метровыми стержнями, можно выяснить, как выглядит электрическое поле вблизи заряженной частицы, покоящейся в системе отсчёта ракеты (на рис. 142 изображена картина, наблюдаемая в системе ракеты, а на рис. 143 — картина, наблюдаемая в лабораторной системе отсчёта). Мы считаем, что электрическая сила, действующая на пробный заряд, покоящийся в лабораторной системе отсчёта, пропорциональна плотности электрических силовых линий в том месте, где он находится. Следовательно, на пробные заряды, расположенные вдоль пути движения быстрой заряженной частицы (например, в точке 𝐴 на рис. 143), будет действовать сила, меньшая, чем если бы частица покоилась. В свою очередь на пробные заряды, расположенные в стороне от пути движения быстрой заряженной частицы, будет действовать в момент их наибольшего сближения (например, в точке 𝐵 на рис. 143) сила, превышающая ту, которая действовала бы, если бы частица — источник поля — покоилась. На этом и на подобных ему релятивистских эффектах основывается анализ электрического и магнитного полей в превосходной книге Парселла, выпущенной в издательстве Мак-Гроу Хилл. ▲


20. Преобразование скорости вдоль оси 𝑦

Из условия задачи мы знаем, что для любой пары событий на мировой линии частицы Δ𝑥'=0. Тогда из формул преобразования Лоренца


Δ

𝑦

=

Δ

𝑦'

,

Δ

𝑥

=

Δ

𝑡'

sh

θ

𝑟

,

Δ

𝑡

=

Δ

𝑡'

ch

θ

𝑟

,


откуда можно вычислить компоненты скорости в лабораторной системе отсчёта:


β

𝑦

=

Δ𝑦

Δ𝑡

=

Δ𝑦'

Δ𝑡' ch θ𝑟

=

β𝑦'

ch θ𝑟

,


β

𝑥

=

Δ𝑥

Δ𝑡

=

th

θ

𝑟

.


21. Преобразование направлений скоростей

В системе отсчёта ракеты разности координат даются соотношениями


Δ

𝑦'

=

β'

sin φ'

Δ

𝑡'


и


Δ

𝑥'

=

β'

cos φ'

Δ

𝑡'

.


Найдём значения смещений Δ𝑦 и Δ𝑥 в лабораторной системе отсчёта, пользуясь формулами преобразования Лоренца (42), откуда угол между вектором скорости частицы и направлением относительного движения в лабораторной системе отсчёта оказывается равен


β'

sin

φ'


tg φ

=

Δ

𝑦

=

ch θ

𝑟

.


Δ

𝑥

β' cos φ'+β

𝑟


Отличие полученного угла от угла, найденного в упражнении 19, вытекает из того, что теперь мы рассматривали преобразование скорости — величины, включающей время. В последнем уравнении угол φ стремится к нулю при β𝑟→1, тогда как, напротив, в упражнении 19 мы нашли, что угол наклона метрового стержня по отношению к направлению относительного движения систем стремится к 90°, когда β𝑟→1. ▲

22. Эффект «прожектора» 1)

1) Здесь речь идёт о том пучке лучей, который испущен при единичной мгновенной вспышке. Если бы «прожектор» действовал непрерывно в течение всего времени, его луч, напротив, расширился бы вокруг оси, совпадающей с направлением движения (вперёд или назад—несущественно), концентрируясь с точки зрения неподвижного наблюдателя в перпендикулярном движению «прожектора» направлении (например, на летящем вместе с ним экране). См. в связи с этим упражнение 19. Я благодарен П. И. Филиппову, заметившему этот эффект и обратившему на него моё внимание.—Прим. перев.

В системе отсчёта ракеты проекция на ось 𝑥 пути, пройденного светом вспышки, равна Δ𝑥'=cos φ'⋅Δ𝑡'.

Чтобы найти Δ𝑥 и Δ𝑡 в лабораторной системе отсчёта, воспользуемся формулами преобразования Лоренца (42). Скорость распространения света вспышки β равна единице как в системе отсчёта ракеты, так и в лабораторной системе. Поэтому косинус угла между направлением луча и осью 𝑥 в лабораторной системе даётся выражением


Δ𝑥

Δ𝑡

=

cos φ

=

cos φ'+β𝑟

β𝑟 cos φ'+1

.


Это выражение совпадает с полученным в упражнении 21 в случае, когда β'=1, как можно показать на основании тригонометрических тождеств. Лучи, распространяющиеся в переднее полушарие в системе отсчёта ракеты, обладают углами, меньшими, чем φ'=90°. Из только что полученного выражения следует величина максимального угла для таких лучей в лабораторной системе отсчёта: cos φ=β𝑟 при φ'=90°.

Весь свет, испущенный лампой в её системе покоя в переднее полушарие, собирается в направленном вперёд конусе с таким углом раствора относительно направления движения лампы, если наблюдение проводится из лабораторной системы отсчёта. ▲

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное
Эволюция физики
Эволюция физики

Книга Альберта Эйнштейна и Леопольда Инфельда знакомит читателя с развитием основных идей физики. В книге даётся «представление о вечной борьбе изобретательного человеческого разума за более полное понимание законов, управляющих физическими явлениями», в ней показано, как каждая последующая, уточнённая картина мира закономерно сменяет предыдущую. Книга отражает известную среди специалистов эйнштейновскую оценку задач современной физики и её основных тенденций развития, которые в конечном счёте ведут к созданию единой физической теории. Мастерское изложение делает книгу А. Эйнштейна и Л. Инфельда доступной и для неспециалистов. Книга переведена на многие языки мира, неоднократно переиздавалась и переиздаётся в различных странах.

Альберт Эйнштейн , Леопольд Инфельд

Физика / Образование и наука