Читаем Физика пространства - времени полностью

Такое обозначение ещё можно иногда встретить. Однако в физических рассуждениях полезнее всего использовать величины, одинаковые во всех системах отсчёта, такие, как 𝑚 и 𝑑τ. Этот факт сейчас получает всё более широкое признание. Поэтому мы будем обычно понимать под термином «масса» не зависящую от скорости величину 𝑚.

Рис. 85. Вывод релятивистского выражения для импульса из закона сохранения импульса в случае скользящего соударения.

Частица 𝐵 движется настолько медленно, что ньютоновское выражение для импульса представляет собой сколь угодно хорошее приближение для её импульса: (Импульс)=𝑚⋅Δ𝑦𝐵/Δ𝑡𝐵 Здесь Δ𝑡𝐵 — время, за которое частица 𝐵 пролетает расстояние Δ𝑦𝐵 от нижней границы рисунка до точки соударения. Это лабораторное время по своей величине сколь угодно близко к собственному времени полёта Δτ𝐵 по той же причине, а именно потому, что скорость 𝐵 может быть выбрана сколь угодно малой. (Пример: при β=0,01 относительное различие величин Δτ и Δ𝑡 составляет 5⋅10⁻⁵). Поэтому импульс 𝐵 можно записать как 𝑚⋅Δ𝑦𝐵/Δτ𝐵. Зная величину импульса 𝐵, можно найти величину импульса 𝑝𝐴 частицы 𝐴, сравнивая изображённые здесь диаграммы для импульса и для перемещения 𝐴 (правило подобных треугольников). Для частицы 𝐴 𝑦-компонента перемещения может быть сделана равной 𝑦-компоненте перемещения частицы 𝐵 (симметричное расположение «пола» и «потолка», о которые ударяются соответственно 𝐴 и 𝐵): Δ𝑦𝐴=Δ𝑦𝐵=Δ𝑦. Промежуток собственного времени между моментами соударения и удара об пол (потолок) также один и тот же для 𝐴 и 𝐵: Δτ𝐴=Δτ𝐵.

Доказательство 1) Движение частицы 𝐴 в системе отсчёта ракеты совпадает с движением частицы 𝐵 в лабораторной системе отсчёта (ср. рис. 83 и 84). Поэтому собственные времена полёта равны одно другому: (Δτ𝐴)система ракеты = (Δτ𝐵)лабораторная система.

2) Но собственное время между двумя событиями (столкновение и удар) одинаково во всех системах отсчёта, т.е. (Δτ𝐴)лабораторная ракеты = (Δτ𝐴)система ракеты.

3) Следовательно, (Δτ𝐴)лабораторная ракеты = (Δτ𝐵)лабораторная система.

что и требовалось доказать. Конечно, лабораторные часы показывают совершенно разные продолжительности полётов частиц 𝐴 и 𝐵, если 𝐴 обладает скоростью, близкой к скорости света: (Δ𝑡𝐴лабораторная ракеты = = (Δτ𝐴лабораторная ракеты + (Δ𝑥𝐴лабораторная ракеты ≫ ≫ (Δτ𝐴лабораторная ракеты = = (Δτ𝐵лабораторная ракеты = (Δ𝑡𝐵лабораторная ракеты .

Поэтому импульс частицы 𝐴 в конце концов выражается непосредственно через величины, которые относятся лишь к движению 𝐴: 𝒑𝐴 = 𝑚

Δ𝒓𝐴

Δτ𝐴 .

Переходя от конечных разностей к производным и вспоминая, что импульс и перемещение обладают одним и тем же направлением, получим 𝒑 = 𝑚

𝑑𝒓

𝑑τ .

Это и есть релятивистская формула для импульса, справедливая для частицы, обладающей сколь угодно высокой энергией.

Релятивистский импульс сводится к ньютоновскому в пределе малых скоростей

Насколько велико различие между релятивистским и ньютоновским выражениями для импульса? Релятивистское выражение для импульса должно сводиться к ньютоновскому, когда скорости частиц малы. Такие медленные частицы проходят путь, много меньший одного метра за один метр времени (𝑑𝑟/𝑑𝑡). Тогда собственное время √(𝑑𝑡)²-(𝑑𝑟)²=√1-β²⋅𝑑𝑡 при любом перемещении медленной частицы очень мало отличается от координатного времени 𝑑𝑡:

𝑑τ

𝑑𝑡

(для медленной частицы),

причём для β=0,01 это равенство справедливо с точностью до 5 : 100 000 и стремится к тождественному совпадению при β→0. При этом релятивистское выражение для импульса 𝒑=𝑚⋅𝑑𝒓/𝑑τ совпадает с ньютоновским выражением 𝒑=𝑚⋅𝑑𝒓/𝑑𝑡 величина 𝑚 одна и та же (инвариант 𝑚!).

В некоторых случаях удобнее выражать импульс через параметр скорости частицы θ, а иногда через её скорость β=th θ. Тогда

𝑝

=

𝑚

𝑑𝑟

𝑑τ

=

𝑚

𝑑𝑟

√(𝑑𝑡)²-(𝑑𝑟)²

=

=

𝑚⋅𝑑𝑟/𝑑𝑡

=

1

-

𝑑𝑟

²

½

𝑑𝑡

=

𝑚β

√1-β²

=

𝑚 th θ

√1-th²θ

=

=

𝑚 th θ

=

ch²θ

 -

sh²θ

½

ch²θ

ch²θ

𝑚 th θ ch θ

√ch²θ-sh²θ

=

𝑚 sh θ

,

так что

𝑝

=

𝑚 sh θ

=

𝑚β

√1-β²

релятивистский

импульс,

размерность массы

(73)

Другой вид имеет ньютоновское выражение для импульса:

𝑝

=

𝑚β

=

𝑚 th θ

ньютоновский

импульс,

размерность массы

(74)

Эти два выражения для импульса различаются множителем

𝑑𝑡

𝑑τ

=

ch θ

1

√1-β²

,

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное