Читаем Физика пространства - времени полностью

Проверки эвклидовой геометрии

Проверки лоренцевой геометрии

42 000

геодезистов (согласно статистическим данным США за 1963 г.), каждый из которых производит по 20 съёмок в год, определяя при каждой по

𝑛

вершин ограничивающего многоугольника, измеряя внутренний угол при каждой вершине, складывая углы и сравнивая полученную сумму с величиной (

𝑛-2

)

⋅180°

, предсказываемой эвклидовой геометрией

50 ускорителей элементарных частиц (ориентировочно), дающих частицы с энергией выше 100

Мэв

, каждый из которых работает по 100 дней в году и каждый регистрирует по 200 столкновений в день, в которых должны были бы чувствоваться отклонения от релятивистских законов сохранения

Результат

:

800 000

проверок в год, каждая с относительной точностью

1⋅10⁻⁴

или выше

Результат

:

1 000 000

проверок в год, каждая с относительной точностью

1⋅10⁻⁴

или выше

В ядерной физике многие объекты исследования живут лишь очень короткое время. Нелегко точно определить значения масс таких короткоживущих частиц с помощью обычных масс-спектрометров. Вместо этого их массы определяются с помощью законов сохранения импульса и энергии, применяемых к процессам столкновений или превращений частиц, массы одной или более из которых нам уже известны. Уже при таких расчётах можно проверять законы сохранения, так как интересующая нас частица часто образуется в ходе нескольких различных реакций. Однако для того, чтобы непосредственно проверить равенство энергии, выделяющейся при превращениях, и энергии, вычисляемой по изменению величины массы покоя, лучше обратиться к миру ядерной физики. Там величина массы определяется непосредственно и с высокой степенью точности как для стабильных ядер, так и для некоторых нестабильных.

Ядерная физика предоставляет особенно благоприятные возможности для точной проверки законов сохранения

Возможности точного сравнения величины выделяющейся энергии и изменения массы наиболее благоприятны в случае лёгких ядер, так как при этом изменение массы в ходе рядовой ядерной реакции составляет более значительную часть полной массы и, следовательно, может быть более точно определено, чем в случае тяжёлых ядер. Мы рассмотрим поэтому реакцию между двумя самыми лёгкими атомными ядрами,— ту реакцию, которая к тому же имеет громадное значение в наш ядерный век:

Быстрый

дейтрон

+

Покоящийся

дейтрон

Протон

с очень

высокой

энергией

+

Ядро

трития с

высокой

энергией

Нейтрон

с очень

высокой

энергией

+

Ядро

гелия-3 с

высокой

энергией

или

𝙷²

(быстрый)

+

𝙷²

𝙷¹

+

𝙷³

𝑛

+

𝙷𝚎³

(93)

Обе альтернативные реакции, описываемые схемой (93), происходят со сравнимыми частотами при взрыве водородной бомбы (или «термоядерного оружия»). Они приводят к высвобождению значительной энергии, что характерно для устройств, использующих дейтерий («тяжёлый водород» 𝙷²). Кинетическая энергия продуктов такой термоядерной реакции в сотни раз превышает кинетическую энергию первоначальных дейтронов.

Масса ядра трития, определённая из законов сохранения, согласуется с его массой, измеренной с помощью спектрометра

Реакция, приводящая к возникновению ядра трития [первая из двух альтернативных реакций (93)], служит наиболее точным самостоятельным методом проверки законов сохранения, какой только возможно найти в физике вообще. Реализация этого метода возможна потому, что с помощью масс-спектрометра удаётся независимым образом точно определять массы покоя всех частиц, принимающих участие в этой реакции (дейтрона, протона и ядра трития).

Но массу покоя нейтрона невозможно определить независимым образом столь же точно. Поэтому мы не концентрируем внимания на второй реакции (93), приводящей к образованию нейтрона. Она непригодна для проведения наиболее точных проверок эквивалентности массы и энергии. Нейтрон — нестабильная частица (со средним временем жизни около 17 мин), а что важнее всего, он безразличен к воздействию электрического и магнитного полей в масс-спектрометре (электрически нейтрален!). Такая безразличность является препятствием для прецизионного независимого определения массы нейтрона.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное
Занимательная физика. Книга 2
Занимательная физика. Книга 2

Вторая книга «Занимательная физика» представляет собой самостоятельный сборник, не являющийся прямым продолжением первой. Книга названа «второю» потому лишь, что написана позднее первой. Успех первого сборника побудил автора обработать остальной накопившийся у него материал, и таким образом составилась эта вторая или, вернее, другая книга, охватывающая те же разделы физики. Для оживления интереса к физическим расчетам в нее введен вычислительный материал, и сборник, в общем, рассчитан на более подготовленного читателя, хотя различие в этом отношении между обеими книгами настолько незначительно, что их можно читать в любой последовательности и независимо одну от другой. «Занимательная физика» поможет понять и полюбить физику, добиться успеха в изучении этого предмета. Этот сборник не призван заменить официальные пособия, но он расскажет Вам о физических явлениях совсем по-иному, простым и понятным каждому языком. Цель книги – возбудить деятельность научного воображения, приучить мыслить в духе физики и развить привычку к разностороннему применению своих знаний. Возможно, именно с нее и начинается любовь к физике.

Яков Исидорович Перельман

Физика
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное