В целом происходит переход от истинных растворов через процессы моноядерного и полиядерного комплексообразования к образованию коллоидов, которые подвержены процессам коагуляции, пептизации и стабилизации, к образованию осадков.
Коллоидообразование, как уже показано ранее, достаточно часто может проявляться как побочный процесс, оказывающий определяющее влияние на физико-химическое поведение компонентов в технологических схемах. В некоторых случаях коллоидообразование является целевым процессом. В той и другой ситуации определяющим является исследование химизма и механизма процессов коллоидообразования, что дает возможность управлять процессом в целом. Одним из примеров целенаправленного использования процессов коллоидообразования, как стадии изменения дисперсного состава системы может являться метод осаждения из гомогенных растворов или метод возникающих реагентов, который был реализован для решения задачи получения тонкослойных неорганических сорбентов, что будет обсуждено далее.
Здесь в качестве примера рассмотрим случай, когда требуется получить очень узкое распределение частиц по размерам или довольно медленный рост зародышей с помощью метода осаждения из гомогенных растворов урана (VI) аммиаком. Этот процесс был разработан для получения порошков UO2
со сферической или почти сферической формой частиц, которые можно было бы применять в качестве ядерного топлива в суспензионных реакторах. В результате были получены частицы порошка с диаметром около 10 мкм с довольно узким распределением частиц по размерам (рис. 1.14) при осаждении из кипящего раствора азотнокислого уранила, содержащего в качестве донора аммиака мочевину, в результате гидролиза которой при повышенной температуре происходит контролируемое выделение аммиака и, следовательно, повышение рН.Рис. 1.14. Распределение по размерам частиц UO2
, полученной по мочевинному методу [7].К подобным результатам пришли, управляя процессом гидролиза путем торможения реакции гидролиза.
Одним из звеньев в последовательности гидролитических процессов является медленная реакция. По этой причине к раствору азотнокислого уранила можно добавлять больше аммиака, чем его требуется для осаждения в равновесных условиях, что приводит к увеличению центров осадкообразования, скорость гидролиза регулировали изменением температуры, а форму частиц осадка корректировали введением достаточного количества сульфат-ионов (рис. 1.15, 1.16) [8].
Рис. 1.15. Распределение по размерам частиц UO2
, полученной сульфатным методомРис. 1.16. Электронно-микроскопические снимки частиц осадка, полученного сульфатным методом (х6000).
1.5. Радиоколлоиды. Истинные радиоколлоиды
Простейшая модель строения коллоидной частицы рассмотрена ранее. Золь AgBr, полученный из AgNO3
и избытка KBr, полностью отвечает этой модели:Представим, что в момент образования коллоидной частицы все серебро состояло из радионуклида Ag*, тогда все оно будет сосредоточено в агрегате коллоидной частицы. Коллоидные частицы, агрегаты которых состоят из радионуклидов, называются истинными радиоколлоидами. (Аналогично и в общем случае, если целевой компонент входит в агрегат коллоидной частицы, то можно говорить о том, что он образует истинный коллоид).
Предположим, что серебро представлено стабильным изотопом, а в растворе KBr содержатся микроколичества J*. Тогда при образовании золя AgBr
часть ядер J* может принять участие в формировании потенциалопределяющего слоя, следовательно, мы имеем первичную потенциалопределяющую адсорбцию. Законы, управляющие поведением йода, – закон действующих масс и его частный случай – закон Генри, который рассмотрим позже. Если тоже золь AgBr образован в избытке AgNO3, то его структура будет следующая:{