Каждая ультрамикрочастица представляет собой пакет ориентированных полимерных цепей с преимущественным выходом концевых групп на торцевые поверхности. Атомы железа в составе таких полимерных цепей могут быть замещены атомами примеси (М) с образованием оловой или оксо-связи, образуя гетерополиядерные гидроксокомплексы:
Сформированный из полимерных ультрамикрочастиц золь гидроксида железа коагулирует с образованием удлиненных микрочастиц размером в десятые доли микрометра, которые слипаются друг с другом и формируют продолговатые макрочастицы размером в десятки микрометров, собирающиеся во флокулы. Ультрамикрочастицы длительно сохраняют свою индивидуальность в объеме микрочастиц, микрочастицы – в объеме макрочастиц, а макрочастицы – в объеме флокул. В результате свежеобразованный продукт гидролиза имеет многоуровневую иерархическую структуру, которая определяет важнейшие фильтрационные и сорбционные его свойства (рис. 1.22).
Рис. 1.22. Схема иерархической структуры геля гидроксида железа [9].
Анализ показал, что образование частиц всех иерархических уровней удовлетворительно описывается одним уравнением – уравнением Фоккера-Планка, которое устанавливает связь между "историей" системы и ее вероятностными характеристиками в конце процесса. Параметры этого уравнения имеют разный физический смысл применительно к частицам разных уровней. Иерархическая структура свежеобразованного гидроксида железа (Ш) обеспечивает быстрый доступ компонентов раствора к любой точке осадка. В частности, растворенная примесь может практически "мгновенно" проникнуть из раствора в объем флокул, представляющих собой пространственную сеть продолговатых макрочастиц, соединенных концами. Диффундируя по "каналам" между макрочастицами, заполненными маточным раствором, микропримесь получает доступ к каждой макрочастице независимо от ее положения относительно центра масс флокулы. В объеме макрочастицы также имеются каналы – пространства между составляющими их микрочастицами. По этим каналам микропримссь получают доступ к каждой ультрамикрочастице, которая является носителем сорбционных свойств гидроксида.
Изложенные представления о механизме формирования твердой фазы, развитые И. В. Мелиховым, дают более полную картину превращения истинно-растворенных форм металла через полимерные и коллоидные формы в частицы осадка, а также заставляют по-новому взглянуть на проблему истинных и псевдорадиоколлоидов. Еще раз к проблеме иерархической структуры мы обратимся при рассмотрении проблем, касающихся направленного синтеза неорганических сорбентов.
1.7. Экспериментальные методы исследования форм состояния микрокомпонентов в растворах
Для исследования форм состояния микрокомпонентов-радионуклидов в растворах и других средах используется множество методов и традиционных, и достаточно новых. Но надо иметь в виду, что только комплексное исследование с применением различных методов дает возможность адекватно оценить распределение радионуклида между коллоидной и ионо-дисперсной составляющей, выяснить природу коллоидов и формы нахождения радионуклида в истинном растворе. Хотелось бы подчеркнуть, что определение форм состояния необходимо проводить для конкретного состава системы, с учетом всех факторов, которые могут влиять на распределение радионуклида по формам (состав раствора, рН, присутствие примесных веществ и т.д.), а переносить результаты, полученные для других условий следует с большой осторожностью, особенно для природных систем.
Для решения вопроса о природе коллоидов, что совершенно необходимо для учета их влияния, применяют комплексный подход, сочетающий термодинамический расчет форм состояния микрокомпонентов в растворе, растворимости труднорастворимых соединений с учетом процессов комплексообразования, и экспериментальные методы исследования форм состояния радионуклидов в водных растворах: