Но все эти интерпретации кажутся весьма искусственными, и сама абстрактная геометрия представляет интерес главным образом для тех немногих, даже среди математиков, специалистов, которые посвятили себя изучению геометрии. Например, геометрия прямых в трехмерном пространстве представляет интерес и ценность сама по себе, но нас сейчас она будет интересовать главным образом как наиболее естественная интерпретация геометрии четырех измерений, в которой точки означают точки, прямые — прямые линии, а отношения имеют тот же смысл, в котором мы привыкли понимать их в двумерной и трехмерной геометриях, согласующихся с нашим повседневным опытом. Даже если математик использует абстрактную геометрию в какой-либо другой области математики, он всегда стремится интерпретировать ее наиболее естественным образом.
Самыми важными из геометрий, развитых при помощи различных систем аксиом, являются две геометрии, известные под названием неевклидовых геометрий Эти геометрии достаточно полно изложены в приводимом ниже очерке «Неевклидова геометрия и четвертое измерение». Ни Лобачевский, ни Бойяи не использовали абстрактный подход к геометрии, намеченной нами выше, тем не менее, как выяснилось, открытая ими гиперболическая геометрия великолепно согласуется с нашим повседневным опытом, если мы ограничимся рассмотрением небольшой части плоскости или небольшой области пространства. То же самое можно сказать и относительно эллиптической геометрии. Мы не можем даже утверждать, что геометрия нашего пространства евклидова и не является ни гиперболической, ни эллиптической. Неевклидовы геометрии в случае двух измерений можно применять к некоторым кривым поверхностям в обычном пространстве (то есть пространстве с евклидовой геометрией), если под термином прямая понимать геодезическую, или кратчайшую, линию. Иногда это утверждение принимают за объяснение неевклидовой геометрии и предполагают, что плоскость в неевклидовой геометрии не является плоскостью, а прямая — прямой.
Так же, как в обычном трехмерном евклидовом пространстве можно найти кривые поверхности, к которым применимы неевклидовы геометрии двух измерений, в четырехмерном пространстве можно указать искривленные трехмерные пространства, или гиперповерхности, к которым применимы трехмерные неевклидовы геометрии. Некоторые склонны усматривать в этом дополнительное объяснение неевклидовых геометрий, ошибочно полагая, будто наше пространство является одним из таких искривленных пространств в пространстве четырех измерений. Некоторые даже считают, что геометрия четырех измерений была специально создана для объяснения неевклидовых геометрий. Сами по себе неевклидовы геометрии не исходят из предположения о том, что пространство искривлено. Неевклидовы геометрии двух и трех измерений не содержат никаких предположений относительно четвертого измерения. Действительно, мы можем предположить, что четырехмерное пространство, если оно существует, само является неевклидовым (эллиптическим или гиперболическим) и что наше пространство также является трехмерным неевклидовым (эллиптическим или гиперболическим) пространством, причем для этого нам вовсе не потребуется вводить кривизну. Четырехмерная геометрия отнюдь не обязана своим происхождением неевклидовым геометриям. И в том, и в другом случае мы в равной мере имеем дело с отходом от традиций. И четырехмерная, и неевклидовы геометрии выросли из современного анализа общей природы геометрии, но геометрии высшего числа измерений обязаны своим происхождением естественному обобщению двумерной и трехмерной геометрий, и математик находит им многие применения, не уступающие по важности их применению в неевклидовых геометриях.
Понятие многомерных геометрий играет важную роль в математике главным образом из-за параллелизма, существующего между алгеброй и геометрией. Алгебра использовалась до некоторой степени при доказательстве теорем, в которых приходилось рассматривать пропорции и другие отношения между числовыми величинами, но одновременное изучение алгебры и геометрии было впервые систематически проведено в аналитической геометрии и впоследствии стало основой наиболее существенной части математики. Однако алгебра занимается изучением различных величин, одни из них соответствуют планиметрии, другие — стереометрии. Кроме того, в алгебре встречаются величины, которые можно было бы назвать одномерными. Тогда соответствующая им геометрия, как нетрудно понять, интерпретировалась бы как геометрия точек па прямой, хотя такая геометрия вряд ли заслуживала бы внимания, если бы не потребности алгебры.