Читаем Флатландия. Сферландия полностью

Геометрия четырех измерений, построенная на основе соответствующей системы аксиом и применяемая обычным способом к точкам, прямым и т. д., представляет собой вполне определенную систему. Однако при попытке облечь наши идеи в физическую форму и представить себе мир либо двух, либо четырех измерений, заполненный двумерной или четырехмерной материей, мы сталкиваемся с явным произволом. Даже для физика материя представляет собой загадку, и мы можем развивать различные теории материи подобно тому, как мы выводим геометрии из различных систем аксиом. Мы не можем утверждать, что до конца постигли все свойства реально существующей материи, поэтому наделение материи в воображаемом пространстве необычными свойствами нельзя считать полностью лишенным смысла. Так, чтобы выяснить, как следует относиться к воображаемому пространству четырех измерений, вполне допустимо предположить, что существует двумерный мир с его обитателями, даже если существование такого мира заведомо исключено. Аналогично мы могли бы предположить, что Луна населена разумными существами, и получить весьма живую картину Лунной поверхности с точки зрения ее обитателей.

Итак, предположим, что двумерный мир существует. Следующая, не менее интересная задача состоит в том, чтобы понять, как далеко мы можем продвинуться в его описании. Например, можно предположить, что двумерная материя в действительности трехмерна и что двумерные существа также трехмерны. Для этого обитателям плоского мира мы можем приписать небольшую» толщину в третьем измерении или по крайней мере снабдить их некой толщиной, которую они сами воспринимать не могут. Но точно так же можно предположить, что обитатели плоского мира двумерны, и проследить, к чему приводит подобное допущение. Любую материальную частицу мы условимся рассматривать как точку, в которой сходятся или от которой исходят притягивающие или отталкивающие силы. Нетрудно предположить, что все эти силы расположены в одной плоскости. Двумерное существо, встретив на своем пути любой объект, сможет распознать, твердый он (точнее, его контур) или мягкий. Световые волны, распространяясь по плоскости, могут отражаться от различных предметов, точнее, от их края, и создавать на сетчатой оболочке глаза двумерных существ изображение. Двумерные волны могут возбуждать особую звукочувствительную струну в слуховой полости двумерных существ. Предметы могут удерживаться вместе и прикрепляться друг к другу либо путем прилипания, либо при помощи неких зажимов. Механические устройства и тела живых существ в плоском мире должны были бы иметь сравнительно простую структуру, если там, так же как в нашем мире, изолированные друг от друга предметы практически не взаимодействуют друг с другом. Ни в одном двумерном предмете не могло бы быть сквозных отверстий. Трубы не могли бы существовать в двумерном мире, Если бы в двумерном доме одновременно открылись две двери или распахнулось несколько окон, то такой дом развалился бы на отдельные части. По-видимому, существование в двумерном мире лишь весьма несложных форм и структур отразилось бы на сравнительно низком уровне умственного развития его обитателей, но в приведенной выше воображаемой структуре двумерного мира нет ничего невозможного.

Обратившись к одновременному рассмотрению двумерного и трехмерного пространств, то есть двумерного пространства, вложенного в трехмерное пространство, мы без труда обнаружим, что сами пространства можно выбирать в значительной мере произвольно. Если при том или ином выборе нам встретятся какие-нибудь трудности, то ими можно пренебречь ради наглядности аналогии. Однако вопрос о существовании двумерного мира в трехмерном пространстве интересен и сам по себе, поэтому мы попытаемся рассмотреть его несколько подробнее. Предположим, что двумерная материальная плоскость, населенная нашими двумерными существами, обладает способностью отражать часть света, падающего на нее извне, в силу чего двумерный мир виден трехмерным существам. Рассматривая обитателей плоского мира, трехмерные существа могут без труда заглядывать не только внутрь домов и в закрытые помещения, но и во внутренности двумерных существ. Если трехмерные существа к тому же обладают способностью извлекать предметы из плоскости и возвращать их обратно, то они смогут «похитить» любой предмет из закрытого помещения, сколь бы надежными ни были его замки.

Весьма интересно было бы изучение законов четырехмерной материй, четырехмерной физики, однако мы ограничимся лишь общим описанием различных возникающих здесь форм и возможных видов движения, не вдаваясь в более строгую теорию и не прибегая к точным научным терминам. Наша цель состоит лишь в том, чтобы дать читателю лишь общее представление о четырехмерном пространстве, нарисовать по возможности более точную картину, и мы при описании четырехмерных существ будем накладывать или снимать ограничения, руководствуясь лишь удобством изложения.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги