Читаем Флатландия. Сферландия полностью

Если две плоскости абсолютно перпендикулярны третьей в двух точках O и O', то они лежат в одном и том же 3-пространстве. В этом 3-пространстве мы могли бы наблюдать обе плоскости полностью и лишь одну-единственную прямую, лежащую в третьей плоскости. Эта прямая проходит через точки O и O', и нам бы казалось, что эта прямая перпендикулярна двум первым плоскостям. С другой стороны, в 3-пространстве, содержащем третью плоскость, мы могли бы рассмотреть ее целиком, но каждая из двух абсолютно перпендикулярных ей плоскостей выродилась бы в прямую.

III

Но продолжим наше знакомство с четырехмерной геометрией.

Если две плоскости абсолютно перпендикулярны в точке O, то любую точку одной из них можно полностью обвести вокруг точки O и другой плоскости, оставаясь при этом все время на одном и том же расстоянии от точки O и другой плоскости. Следовательно, в пространстве четырех измерений мы можем совершить оборот вокруг плоскости так же, как в трехмерном пространстве мы совершаем оборот вокруг прямой. Двумерное существо не может обойти вокруг прямой в своей плоскости, поскольку прямая полностью разделяет плоскость. В трехмерном пространстве мы не можем обойти вокруг плоскости, ибо плоскость полностью разделяет наше пространство. Но в пространстве четырех измерений плоскости, хотя она и обладает двумя измерениями, недостает двух измерений, и поэтому мы можем обойти вокруг плоскости, оставаясь все время на заданном расстоянии от любой выбранной на ней точки. Если мы отбросим одно из двух измерений плоскости, превратив ее тем самым из плоскости в прямую, и перейдем в 3-пространство, содержащее абсолютно перпендикулярную плоскость, то мы сможем наблюдать за вращением одной плоскости вокруг другой: нам будет казаться, что исходная плоскость поворачивается вокруг некоторой прямой.

Плоскость может вращаться по самой себе вокруг одной из своих точек. Если две плоскости абсолютно перпендикулярны в точке O, то любая из них, вращаясь по самой себе вокруг точки O, остается абсолютно перпендикулярной другой плоскости. В этом случае можно сказать, что подвижная плоскость вращается вокруг фиксированной плоскости как вокруг оси, а саму фиксированную плоскость назвать осевой плоскостью. В каждой точке фиксированной плоскости можно построить абсолютно перпендикулярную плоскость. Все абсолютно перпендикулярные плоскости могут вращаться вокруг одной и той же исходной фиксированной плоскости. То же происходит и в нашем трехмерном пространстве, если мы выберем фиксированную прямую и в каждой ее точке построим перпендикулярную ей плоскость. Мы можем считать, что тела в нашем пространстве или в части пространства вращаются вокруг фиксированной оси. Аналогично можно считать, что тела в четырехмерном пространстве или в части этого пространства вращаются вокруг фиксированной плоскости как вокруг осевой плоскости. При таком вращении части тела не претерпевают деформации. Они сохраняют свою форму неизменной, и поэтому отпадает необходимость предполагать, что они упруги.

Если небольшие деформации считать допустимыми, то в качестве оси вращения можно выбрать кривую поверхность. Назовем материальной поверхностью тело, которое имеет значительную протяженность в двух измерениях и очень малые размеры в двух других измерениях. Пользуясь трехмерной аналогией, мы можем сказать, что кусок ткани имеет значительную протяженность в двух измерениях и очень малые размеры в третьем. Нить имеет существенные размеры лишь в одном измерении, а ее размеры в двух других измерениях очень малы. Если материальная поверхность обладает гибкостью, то ее можно перекрутить так, чтобы две противоположные стороны материальной поверхности поменялись местами. Материальная поверхность, подобно куску ткани, имеющему небольшую толщину в направлении четвертого измерения, ограничена поверхностями со всех сторон.

Можно сказать, что поворот гибкой материальной поверхности на 180° переводит две стороны, первоначально находившиеся в нашем пространстве, снова в наше пространство, но при этом меняет их местами: каждая сторона после поворота занимает то место, которое первоначально занимала другая. Различные части материальной поверхности при таком повороте не взаимодействуют между собой, поэтому поворачивать можно любую материальную поверхность, независимо от того, является ли она открытой частью некоторой большей материальной поверхности или замкнута, наподобие полого резинового шара. В нашем пространстве резиновую ленту, изгибая, можно вывернуть наизнанку. Это в точности соответствует выворачиванию сферы в пространстве четырех измерений.

Симметричные фигуры в четырехмерном пространстве лучше всего рассматривать, изучая в отдельности симметрию относительно точки, прямой или плоскости.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги