Читаем Флатландия. Сферландия полностью

Рассмотрим сферическое четырехмерное колесо. Это тело, имеющее вид сферы в трех измерениях и очень небольшой размер в четвертом измерении. Такое колесо с одномерным отверстием, сквозь которое можно пропустить осевой стержень, будет вращаться, но его движение не ограничивается определенным направлением вращения, как это происходит с плоским колесом, вращающимся в одной плоскости. Для механизма, требующего определенное направление вращения, мы будем пользоваться плоскими колесами с осевыми пластинками[12]. Сферическое колесо можно использовать для четырехмерных экипажей. Если четырехмерные существа живут на четырехмерной Земле, то есть на ее трехмерной границе, то экипаж с четырьмя колесами любого рода или с большим числом колес оказался бы незаменимым при путешествиях. Экипаж с плоскими колесами мог бы передвигаться лишь по прямой без трения между колесом и поверхностью земли. Экипаж со сферическими колесами мог бы передвигаться по плоскости в любом направлении без трения, которое возникало бы лишь при переходе из одной плоскости в другую.

Для устойчивости экипаж должен был бы обладать по крайней мере четырьмя колесами, а последние должны были бы иметь по крайней мере две оси. Даже если экипаж имел бы плоские колеса и осевые пластины, нам понадобились бы по крайней мере две такие пластины. Для того чтобы находиться в равновесии, необходимо иметь четыре точки опоры, причем все они не должны быть расположены в одной плоскости.

Трудно представить себе, каким образом границы гипертел, то есть конечных частей четырехмерного пространства, могут быть трехмерными. Ясно, что этого требует аналогия, но понять, каким образом каждая точка, лежащая внутри трехмерного тела, может разделять две части, на которые рассекает четырехмерное пространство это трехмерное тело, довольно трудно. Находясь в любой точке внутри трехмерной границы гипертела, мы можем выйти из нее по трем взаимно перпендикулярным направлениям, оставаясь при этом внутри границы. Столько же взаимно перпендикулярных направлений мы насчитываем в нашем трехмерном пространстве. Нам придется идти по кривой траектории, если граница гипертела искривлена, но в начале пути мы можем выйти из точки по трем взаимно перпендикулярным направлениям точно так же, как в нашем трехмерном пространстве.

Гипертело, ограниченное многогранниками, можно вскрыть и разложить многогранники в одном 3-пространстве. Обращая этот процесс, мы можем образовать границу гипертела, составляя ее из надлежащим образом подобранных трехмерных тел в 3-пространстве и поворачивая их затем вокруг общих граней так, чтобы в конце концов они образовали границу гипертела. Трехмерные тела при этом не деформируются и не распадаются. Так, если мы возьмем куб, разместим на его гранях шесть других равных ему кубов и поместим еще один куб поверх одного из шести кубов, то такую конструкцию можно повернуть так, чтобы она образовала гиперкуб, или тессеракт, который упоминается в некоторых из приводимых ниже очерков. Такое построение гипертел аналогично построению многогранников из плоских разверток. Аналогия очень ясная, настолько, что мы можем не сомневаться в итоге нашего построения, хотя оно и приводит к удивительным результатам.

Упомянем здесь некоторые из наиболее простых фигур четырехмерной геометрии, аналогичные фигурам, изучаемым нашей стереометрией.

Первые фигуры, о которых следовало бы упомянуть, — это гиперпризма и гиперцилиндр с параллельными линейными элементами, а также гиперпирамида и гиперконус с линейными элементами, пересекающимися в вершине. Основаниями всех этих гипертел служат многогранники или некие другие трехмерные тела, а их линейные элементы исходят из трехмерного пространства, в котором лежит основание. Гиперкуб является частным случаем гиперпризмы.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги