Рассмотрим сферическое четырехмерное колесо. Это тело, имеющее вид сферы в трех измерениях и очень небольшой размер в четвертом измерении. Такое колесо с одномерным отверстием, сквозь которое можно пропустить осевой стержень, будет вращаться, но его движение не ограничивается определенным направлением вращения, как это происходит с плоским колесом, вращающимся в одной плоскости. Для механизма, требующего определенное направление вращения, мы будем пользоваться плоскими колесами с осевыми пластинками[12]
. Сферическое колесо можно использовать для четырехмерных экипажей. Если четырехмерные существа живут на четырехмерной Земле, то есть на ее трехмерной границе, то экипаж с четырьмя колесами любого рода или с большим числом колес оказался бы незаменимым при путешествиях. Экипаж с плоскими колесами мог бы передвигаться лишь по прямой без трения между колесом и поверхностью земли. Экипаж со сферическими колесами мог бы передвигаться по плоскости в любом направлении без трения, которое возникало бы лишь при переходе из одной плоскости в другую.Для устойчивости экипаж должен был бы обладать по крайней мере четырьмя колесами, а последние должны были бы иметь по крайней мере две оси. Даже если экипаж имел бы плоские колеса и осевые пластины, нам понадобились бы по крайней мере две такие пластины. Для того чтобы находиться в равновесии, необходимо иметь четыре точки опоры, причем все они не должны быть расположены в одной плоскости.
Трудно представить себе, каким образом границы гипертел, то есть конечных частей четырехмерного пространства, могут быть трехмерными. Ясно, что этого требует аналогия, но понять, каким образом каждая точка, лежащая внутри трехмерного тела, может разделять две части, на которые рассекает четырехмерное пространство это трехмерное тело, довольно трудно. Находясь в любой точке внутри трехмерной границы гипертела, мы можем выйти из нее по трем взаимно перпендикулярным направлениям, оставаясь при этом внутри границы. Столько же взаимно перпендикулярных направлений мы насчитываем в нашем трехмерном пространстве. Нам придется идти по кривой траектории, если граница гипертела искривлена, но в начале пути мы можем выйти из точки по трем взаимно перпендикулярным направлениям точно так же, как в нашем трехмерном пространстве.
Гипертело, ограниченное многогранниками, можно вскрыть и разложить многогранники в одном 3-пространстве. Обращая этот процесс, мы можем образовать границу гипертела, составляя ее из надлежащим образом подобранных трехмерных тел в 3-пространстве и поворачивая их затем вокруг общих граней так, чтобы в конце концов они образовали границу гипертела. Трехмерные тела при этом не деформируются и не распадаются. Так, если мы возьмем куб, разместим на его гранях шесть других равных ему кубов и поместим еще один куб поверх одного из шести кубов, то такую конструкцию можно повернуть так, чтобы она образовала гиперкуб, или тессеракт, который упоминается в некоторых из приводимых ниже очерков. Такое построение гипертел аналогично построению многогранников из плоских разверток. Аналогия очень ясная, настолько, что мы можем не сомневаться в итоге нашего построения, хотя оно и приводит к удивительным результатам.
Упомянем здесь некоторые из наиболее простых фигур четырехмерной геометрии, аналогичные фигурам, изучаемым нашей стереометрией.
Первые фигуры, о которых следовало бы упомянуть, — это гиперпризма и гиперцилиндр с параллельными линейными элементами, а также гиперпирамида и гиперконус с линейными элементами, пересекающимися в вершине. Основаниями всех этих гипертел служат многогранники или некие другие трехмерные тела, а их линейные элементы исходят из трехмерного пространства, в котором лежит основание. Гиперкуб является частным случаем гиперпризмы.