Читаем Флатландия. Сферландия полностью

Если мы выберем из четырех призм четыре элемента, образующие параллелограмм, то все параллелепипеды мы получим, двигая этот параллелограмм параллельно самому себе. При этом вершины его будут описывать основания призм. Набор из четырех призм можно также получить, передвигая параллельно самим себе многоугольные основания. При этом вершины оснований будут описывать параллелограммы, вдоль которых параллелепипеды примыкают друг к другу. Таким образом, параллелограмм и многоугольник играют роль производящих элементов, причем каждый служит для другого направляющей при получении соответствующей части гиперпризмы.

Аналогичным образом можно построить гиперцилиндр с двумя цилиндрическими основаниями. Часть боковой поверхности гиперцилиндра состоит из двух цилиндров, соединяющих концы цилиндрических оснований, поэтому всю фигуру можно рассматривать как гиперцилиндр двумя способами. Из четырех цилиндров можно выбрать четыре элемента, образующие параллелограмм, а остальную часть боковой границы можно построить, двигая этот параллелограмм параллельно самому себе. При этом его вершины будут описывать основания цилиндров. Поскольку цилиндры можно получить аналогичным способом, двигая плоскую кривую параллельно самой себе вокруг любого из параллелограммов, то параллелограмм и замкнутая плоская кривая позволяют получить весь гиперцилиндр. При построении одной его части параллелограмм служит производящим элементом, а замкнутая плоская кривая — направляющей, при получении другой части роли элементов меняются.

Таким образом, гиперпризму, основаниями которой служат призмы, и гиперцилиндр с цилиндрическими основаниями можно рассматривать как частные случаи некоторого класса гипертел, допускающего следующие описания. Расположим два многоугольника, две замкнутые плоские кривые или многоугольник и плоскую кривую так, чтобы они пересекались, но не лежали в одном 3-пространстве. Их плоскости будут пересекаться лишь в той точке, где пересекаются сами кривые. Один многоугольник или одну кривую начнем двигать параллельно себе вокруг другой. При этом мы получим трехмерную фигуру в форме кольца (причем не только наружную поверхность, но и все внутренние точки фигуры). Двигая другой многоугольник или кривую вокруг первого, мы точно таким же образом получим вторую фигуру в форме кольца. Эти две кольцеобразные фигуры плотно примыкают друг к другу и образуют границу гипертела, внутри которой заключена конечная часть четырехмерного пространства. Такое гипертело можно назвать двойной призмой, призмоцилиндром или двойным цилиндром в зависимости от того, что мы выбрали вначале: два многоугольника, многоугольник и кривую или две кривые. Если плоскости двух производящих многоугольников абсолютно перпендикулярны, то мы получим прямую двойную призму. Аналогично можно получить и прямые фигуры остальных двух типов.

Если любую часть границы отделить от остальной и провести разрез вдоль одного из производящих элементов, то оставшаяся часть границы развернется в одном 3-пространстве, аналогичном нашему трехмерному пространству. Если плоскости двух производящих элементов абсолютно перпендикулярны, то каждая часть границы при развертывании в 3-пространстве превращается в прямую призму или в прямой цилиндр. В этом случае исходные фигуры можно описать иначе. Например, для того чтобы построить прямую двойную призму, достаточно взять две прямые призмы, выбрав их так, чтобы высота каждой из них совпадала с периметром другой призмы. Перегнув их относительно друг друга, мы можем совместить все соответствующие грани и получить трехмерное тело, внутри которого будет заключена конечная часть четырехмерного пространства. Аналогично можно построить прямой призмоцилиндр или прямой двойной цилиндр, взяв в одном случае призму и цилиндр, а в другом два цилиндра.

Если при построении двойного цилиндра мы возьмем два круговых цилиндра, то получившееся гипертело можно назвать цилиндром двойного вращения. Такой цилиндр будет вращаться двумя независимыми способами вокруг двух абсолютно перпендикулярных плоскостей. Плоскости вращения образованы осями двух цилиндров. Каждое из вращений происходит следующим образом. Одна из осей вращается по самой себе, а другая, совпадающая с осевой плоскостью, остается неподвижной.

Если один из цилиндров имеет очень маленький радиус по сравнению с радиусом другого цилиндра, в силу чего у второго цилиндра очень маленькая высота (один цилиндр напоминает веревку, а другой — колесо[13]), то получающееся при этом гипертело можно назвать дважды круговым колесом.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги