На первый взгляд может показаться, что такая комбинация алгебры и геометрии служит главным образом целям геометрии, однако в действительности она оказывается необычайно полезной для алгебры. Происходит это двояким путем. Язык геометрии содержит множество удобных терминов для обозначения объектов, описать которые иным способом было бы необычайно трудно. Применяя наглядные представления геометрии к алгебраическим величинам, мы делаем последние менее абстрактными и более понятными. Такие преимущества мы получаем для изображения алгебраических величин, соответствующих геометриям одного, двух и трех измерении. Однако в алгебре не существует причин, по которым эти величины были бы выделены по сравнению с другими, и, привыкнув оперировать геометрическими терминами в алгебре, мы будем употреблять их применительно ко всем алгебраическим величинам и тем самым используем первое из двух упомянутых выше преимуществ, которые дает нам комбинация алгебры и геометрии.
Но именно из наглядных представлений геометрии математик черпает основную помощь, применяя геометрию к алгебре, а поскольку геометрии высшего числа измерений необходимы для того, чтобы параллелизм между геометрией и алгеброй был полным, то математик пытается воспользоваться наглядными геометрическими представлениями и в этом случае, мысленно перенося нас в некое пространство, к которому применимы эти геометрические представления. Сказанное в особенности относится к четырехмерной геометрии, соответствующей некоторым из наиболее важных алгебраических величин.
Итак, мы видим, что геометрия четырех и большего числа измерений важна математику по двум причинам. Представление о такой геометрии как логической системе теорем, выводимых из некоторой совокупности аксиом, важно для изучающего абстрактную геометрию, а представление о пространстве, к которому применимы возникающие геометрии, оказывается чрезвычайно полезным при различных попытках применения геометрии к другим областям математики. Ни один математик не может считать себя полностью «вооруженным», если в его арсенал не входят хотя бы некоторые сведения из геометрии высшего числа измерений.
II
Математики начали интересоваться понятиями
Геометрия четырех измерений важна не только математику, она привлекает и представителей других наук. Так, четырехмерная геометрия затрагивает проблемы пространства, которые относятся к компетенции философа. Попытки представить себе наглядно четвертое измерение заставляют нас напрягать наше пространственное воображение, и тем самым четырехмерная геометрия привлекает к себе внимание психологов. Попытки использовать теории гиперпространства для объяснения физических и других явлений делают четырехмерную геометрию предметом изучения физиков и других естествоиспытателей. Кроме того, широкий интерес вызывают многие любопытные формы и отношения, возникающие при изучении четырехмерной геометрии. Например, трехмерные симметричные тела, отличающиеся лишь расположением в пространстве, можно перевести друг в друга, повернув их в четырехмерном пространстве. Не меньший интерес вызывает плоскость, которая служит осью вращения, а также то обстоятельство, что в четырехмерном пространстве две полные плоскости иногда могут иметь лишь одну общую точку. Гибкую сферу в четырехмерном пространстве можно вывернуть наизнанку, не разрывая ее при этом. Для того чтобы извлечь любой предмет из закрытой коробки или запертого помещения, в четырехмерном пространстве вовсе не требуется взламывать стенки или проникать сквозь потолок и пол. Узел на веревке в четырехмерном пространстве можно развязать, не прикасаясь к концам веревки, а цепь разъять на отдельные звенья, не распиливая их на части!