Читаем Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального полностью

Мы уже обращались к этому факту, когда угол между двумя сторонами был прямым, но я думаю, что и в случае произвольного угла это кажется столь же понятным.

(Кстати, справедливо и следующее: если три стороны двух треугольников равны, то и треугольники равны; например, если длины сторон 3, 4 и 5 равны, то треугольник должен быть прямоугольным, как я нарисовал выше. Однако это менее очевидно, что Евклид и доказал несколько позднее: Предложение I.8. Если вам кажется, что это очевидно, подумайте о четырехугольнике: вспомните ромб, с которым мы недавно встречались, – у него такие же стороны, как у квадрата, но он же не квадрат.)

А теперь перейдем к pons asinorum. Доказательство в два столбца может выглядеть так:


[63]



Да, мы посреди доказательства, но у нас новая точка и новый отрезок AD, так что лучше обновить чертеж! Кстати, вспомните, что, по нашему предположению, треугольник равнобедренный, поэтому длина AB и AC одинакова; сейчас мы это используем.




QED[64].

Это доказательство посерьезнее, чем то, что мы видели, поскольку тут вам действительно приходится что-то делать: вы проводите новую линию L и придумываете название D для точки, где L пересекает BC. Это позволяет вам воспринять точки B и C как углы двух новых треугольников ABD и ABC, которые, как мы продемонстрируем далее, равны.

Однако существует и более хитрый способ, изложенный примерно через шестьсот лет после Евклида Паппом Александрийским, еще одним геометром из Северной Африки, в трактате Συναγωγή («Математическое собрание»). (Слово «синагога» означает «собрание», и в античном мире оно могло обозначать собрание математических предложений, а вовсе не собрание евреев на молитву.)



Погодите, что произошло? Казалось бы, мы ничего не делали, а нужное заключение появилось просто из ниоткуда, как кролик, выпрыгивающий при отсутствии шляпы. Это создает определенное беспокойство. Это не то, что понравилось бы Евклиду. Но так или иначе, на мой взгляд, это верное доказательство.

Ключ к идее Паппа – предпоследняя строка: треугольники BAC и CAB конгруэнтны. Кажется, что это просто утверждение о равенстве треугольника самому себе, которое выглядит тривиальным. Но присмотритесь более внимательно.

Что на самом деле мы имеем в виду, говоря, что два разных треугольника PQR и DEF конгруэнтны?



А вот что! Мы утверждаем сразу шесть вещей: длина PQ равна длине DE, длина PR равна длине DF, длина QR равна длине EF, угол P равен углу D, угол Q равен углу E, угол R равен углу F.

Конгруэнтен ли треугольник PQR треугольнику DFE? Нет, потому что на рисунке длина стороны PQ не равна длине соответствующей стороны DF.

Если мы серьезно воспринимаем определение конгруэнтности (а для нас, геометров, принимать определения всерьез – в некотором роде фирменная фишка), то треугольники DEF и DFE не конгруэнтны, несмотря на то что это один и тот же треугольник. Потому что DE и DF имеют разную длину.

Однако в нашем доказательстве с мостом ослов треугольник равнобедренный, а потому, когда мы воспринимаем его как треугольник BAC, он в точности тот же, что и в случае, когда мы его рассматриваем как треугольник CAB. Это не тривиальное утверждение. Если я говорю, что имя АННА читается одинаково в обоих направлениях, я в действительности сообщаю вам тот факт, что это палиндром. Возражать против самой концепции палиндрома, заявляя: «Ну конечно, это одно и то же, там две буквы А и две буквы Н, а порядок не важен», – чистое извращение.

На деле слово «палиндромный» было бы хорошим названием для треугольников типа BAC, который конгруэнтен треугольнику CAB, получаемому при записи вершин в обратном порядке. Именно благодаря такой идее Папп и сумел пройти через мост, не прибегая к дополнительным линиям и точкам.

И все же доказательство Паппа не вполне объясняет, почему равнобедренный треугольник имеет два равных угла. Представление о палиндромности равностороннего треугольника, то есть о том, что он остается таким же при записи вершин в обратном порядке, говорит вам то же, что (я уверен) и ваша интуиция: треугольник остается неизменным, когда вы берете его, переворачиваете и кладете обратно на то же место. Как и слово-палиндром, он обладает симметрией. Вот почему нам кажется, что углы должны быть равны.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги

Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное