Читаем Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального полностью

Смысл метода ансамбля не в том, чтобы полностью устранить партийный джерримендеринг, равно как и суть дела Рейнольдс против Симса не в том, чтобы избирательные округа равнялись по численности с точностью до одного человека. Каждое решение составителя карты – от защиты действующего политика до помощи в конкурентных выборах – может иметь влияние. Цель не в том, чтобы обеспечить невозможный абсолютный нейтралитет, а в том, чтобы заблокировать вопиющие нарушения.

Вспомните речь Тэда Оттмана перед законодателями-республиканцами о том, что партия обязана воспользоваться возможностью укрепить контроль. Если ваша задача – добиться большинства в законодательном органе и удержать его, а закон позволяет вам играть так грязно, как вам нравится, то грязь – это ваш долг. Ослабление мощи джерримендеринга, определение уровня нечестности, с которым демократия не будет мириться, оказало бы оздоровляющее влияние на весь процесс. Политики охотнее шли бы на разумные компромиссы, если бы вознаграждение за джерримендеринг не было так велико. Если вы не хотите, чтобы дети воровали в магазинах, возможно, не стоит оставлять столько шоколадок так близко к дверям.

ТРИУМФАЛЬНОЕ ВОЗВРАЩЕНИЕ ГРАФОВ, ДЕРЕВЬЕВ И ОТВЕРСТИЙ

Я мог бы обойти вниманием ту часть рекомбинации, где вы делите удвоенный округ на два, но не стану, поскольку это позволит мне вернуть двух персонажей из предыдущей части книги. Прежде всего, участки для голосования в избирательном округе, подобно кинозвездам или атомам в углеводородах, образуют сеть, или граф, если пользоваться термином Джеймса Джозефа Сильвестра. Территории – это вершины графа, и если они граничат друг с другом, то соответствующие вершины соединены ребром. Если участки выглядят так:



то граф так:



Нам требуется найти способ разделить эти участки на две группы, причем нужно гарантировать, что каждая из этих групп образует связную сеть.

Если определить в одну группу A, B, и C, а в другую D, E и F, то все хорошо:



Однако, если взять C, D и F, то останутся A, B и E, которые не образуют связный округ.



Здесь мы оказались на краю целого кипящего кратера в теории графов. Джон Уршел, нападающий клуба «Балтимор Рэйвенс»[656], в 2017 году ушел из спорта и занялся этой темой, поскольку она всегда была ему интересна. Одна из его первых работ[657] после ухода из футбола посвящалась разбиению графов на две связные компоненты с помощью теории собственных значений, о которых мы говорили в главе 12.

Существует масса способов разбить граф на части. Когда он маленький, как представленный выше, можно просто перечислить все возможные разбиения и выбрать одно из списка наугад. Но если граф будет больше, то составлять списки всевозможных разбиений труднее. Есть трюк для случайного выбора, и в нем поучаствуют наши старые знакомые. Предположим, Акбар и Джефф играют в такую игру: по очереди убирают по одному ребру из графа, и проигрывает тот, кто разбивает граф на отдельные компоненты. Например, в графе выше Акбар может убрать ребро AF, Джефф – ребро DF, затем Акбар мог бы удалить ребро EF (но не AB, потому что тогда вершина A отделится от графа, и он проиграет!). После этого Джефф может удалить BF, и теперь Акбар в тупике: какое бы ребро он ни стер, граф разделится на две не связанные между собой части.



Мог ли Акбар сыграть умнее и победить? Нет, потому что у этой игры есть секретное свойство: если оба игрока будут стремиться не делить граф на части, то совершенно неважно, какие ходы вы делаете: игра всегда закончится после четырех ходов, и Акбар всегда проиграет. На самом деле неважно, насколько велика сеть: количество ходов в игре фиксировано. Для этой величины даже есть изящная формула:

число ребер – число вершин + 1.

В начале игры у нас 6 вершин и 9 ребер, так что 9–6 + 1 = 4. В конце игры остается только 5 ребер, и это число уменьшается до 0. То, что осталось от нашей сети, имеет весьма специальную форму: в получившемся графе нет ни одного цикла, хотя в исходном графе вы могли пройти по циклу от A к B, к F и обратно к A. Если бы в графе был какой-нибудь цикл, то вы могли бы удалить одно из его ребер, но граф не распался бы на части. Поэтому в оставшемся в результате нашей игры графе нет никаких циклов, а граф без циклов – это дерево.

Перейти на страницу:

Все книги серии Библиотека фонда «Эволюция»

Происхождение жизни. От туманности до клетки
Происхождение жизни. От туманности до клетки

Поражаясь красоте и многообразию окружающего мира, люди на протяжении веков гадали: как он появился? Каким образом сформировались планеты, на одной из которых зародилась жизнь? Почему земная жизнь основана на углероде и использует четыре типа звеньев в ДНК? Где во Вселенной стоит искать другие формы жизни, и чем они могут отличаться от нас? В этой книге собраны самые свежие ответы науки на эти вопросы. И хотя на переднем крае науки не всегда есть простые пути, автор честно постарался сделать все возможное, чтобы книга была понятна читателям, далеким от биологии. Он логично и четко формулирует свои идеи и с увлечением рассказывает о том, каким образом из космической пыли и метеоритов через горячие источники у подножия вулканов возникла живая клетка, чтобы заселить и преобразить всю планету.

Михаил Александрович Никитин

Научная литература
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием
Ни кошелька, ни жизни. Нетрадиционная медицина под следствием

"Ни кошелька, ни жизни" Саймона Сингха и Эдзарда Эрнста – правдивый, непредвзятый и увлекательный рассказ о нетрадиционной медицине. Основная часть книги посвящена четырем самым популярным ее направлениям – акупунктуре, гомеопатии, хиропрактике и траволечению, а в приложении кратко обсуждаются еще свыше тридцати. Авторы с самого начала разъясняют, что представляет собой научный подход и как с его помощью определяют истину, а затем, опираясь на результаты многочисленных научных исследований, страница за страницей приподнимают завесу тайны, скрывающую неутешительную правду о нетрадиционной медицине. Они разбираются, какие из ее методов действенны и безвредны, а какие бесполезны и опасны. Анализируя, почему во всем мире так широко распространены методы лечения, не доказавшие своей эффективности, они отвечают не только на вездесущий вопрос "Кто виноват?", но и на важнейший вопрос "Что делать?".

Саймон Сингх , Эрдзард Эрнст

Домоводство / Научпоп / Документальное
Введение в поведение. История наук о том, что движет животными и как их правильно понимать
Введение в поведение. История наук о том, что движет животными и как их правильно понимать

На протяжении всей своей истории человек учился понимать других живых существ. А коль скоро они не могут поведать о себе на доступном нам языке, остается один ориентир – их поведение. Книга научного журналиста Бориса Жукова – своего рода карта дорог, которыми человечество пыталось прийти к пониманию этого феномена. Следуя исторической канве, автор рассматривает различные теоретические подходы к изучению поведения, сложные взаимоотношения разных научных направлений между собой и со смежными дисциплинами (физиологией, психологией, теорией эволюции и т. д.), связь представлений о поведении с общенаучными и общемировоззренческими установками той или иной эпохи.Развитие науки представлено не как простое накопление знаний, но как «драма идей», сложный и часто парадоксальный процесс, где конечные выводы порой противоречат исходным постулатам, а замечательные открытия становятся почвой для новых заблуждений.

Борис Борисович Жуков

Зоология / Научная литература

Похожие книги

Тринадцать вещей, в которых нет ни малейшего смысла
Тринадцать вещей, в которых нет ни малейшего смысла

Нам доступны лишь 4 процента Вселенной — а где остальные 96? Постоянны ли великие постоянные, а если постоянны, то почему они не постоянны? Что за чертовщина творится с жизнью на Марсе? Свобода воли — вещь, конечно, хорошая, правда, беспокоит один вопрос: эта самая «воля» — она чья? И так далее…Майкл Брукс не издевается над здравым смыслом, он лишь доводит этот «здравый смысл» до той грани, где самое интересное как раз и начинается. Великолепная книга, в которой поиск научной истины сближается с авантюризмом, а история научных авантюр оборачивается прогрессом самой науки. Не случайно один из критиков назвал Майкла Брукса «Индианой Джонсом в лабораторном халате».Майкл Брукс — британский ученый, писатель и научный журналист, блистательный популяризатор науки, консультант журнала «Нью сайентист».

Майкл Брукс

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука / Документальное