Вот тут и вступает в игру теория Пуанкаре и Нётер. Как следует из названия, эйлерову характеристику системно изучал швейцарский математик-универсал Леонард Эйлер, однако он рассматривал только двумерные поверхности. Многие люди, включая Иоганна Листинга, пытались распространить идеи Эйлера на трехмерный случай. Но только после Пуанкаре ученые поняли, как перенести результат Эйлера в пространства размерности более трех. Я не стану запихивать на одну страницу первый курс алгебраической топологии, а просто скажу, что Пуанкаре и Нётер дали общую теорию дыр любой размерности, и в их системе количество нульмерных отверстий в каком-то пространстве – это просто число частей, на которое оно разбивается. Шарик, как и соломинка, представляет собой единый объект, поэтому у него только одно отверстие нулевой размерности. А вот два шарика имеют два нульмерных отверстия.
Это определение может показаться странным, но с ним все работает. Шарик имеет:
1 нульмерное отверстие + 1 двумерное отверстие – 0 одномерных отверстий,
что дает нам эйлерову характеристику, равную 2.
В прописной букве В одно нульмерное отверстие и два одномерных, поэтому ее эйлерова характеристика равна – 1[94]
. Разрежьте нижнюю петлю буквы B – и получите букву R, у которой эйлерова характеристика равна 0: у буквы R на одно одномерное отверстие меньше, поэтому число увеличилось на 1. Разрезав петлю буквы R, получите букву K: ее эйлерова характеристика равна 1. Вы могли бы также отрезать ножку у буквы R, получив две буквы P и I; теперь у вас два отдельных куска, поэтому два нульмерных отверстия и одно одномерное в букве P дают 2–1 = 1. Каждый раз, когда вы делаете разрез, вы увеличиваете эйлерову характеристику на 1, и это верно, даже если вы своим разрезом не устраняете одномерную дыру. У буквы I эйлерова характеристика равна 1; разрежьте ее – и получите две буквы I с эйлеровой характеристикой 2. Следующий разрез даст три I и характеристику 3 и так далее.Что, если вы сошьете вместе нижние отверстия штанов? Не стану вдаваться в подробности, но получившаяся форма в системе Пуанкаре имеет одну нульмерную и две одномерные дыры, что дает эйлерову характеристику –1. Иными словами, в штанах после нашего вандализма столько же отверстий, сколько было и до него. Вы избавились от одного, сшив отверстия у лодыжек, но создали новое, которое теперь находится между штанинами. Убедительно? С удовольствием посмотрел бы на такое рассуждение в Snapchat![95]
Глава 3. Одно название разных вещей
Симметрия – это основа современного понимания геометрии. Более того, то, что мы решаем считать симметрией, определяет, с какой геометрией мы имеем дело.
В евклидовой геометрии симметрии – это
Зачем в качестве фундаментальных симметрий брать движения? Одна из веских причин состоит в том (хотя доказать это не так-то легко), что именно движения – это то, что вы можете проделывать с плоскостью, сохраняя при этом расстояние между точками; собственно, и слово
Эти два треугольника конгруэнтны,
а потому мы склонны, как и Евклид, считать, что они равны, несмотря на то что на самом деле это два разных треугольника, расположенных в нескольких сантиметрах друг от друга. Это подводит нас к другому изречению постоянно цитируемого Пуанкаре:
Математика – это искусство давать одно название разным вещам.
Подобные проблемы с определениями – часть нашего мышления и речи. Представьте, что кто-то спрашивает вас, не из Чикаго ли вы, а вы отвечаете: «Нет, я из Чикаго двадцатипятилетней давности». Это было бы абсурдной педантичностью, поскольку, говоря о городах, мы неявно подразумеваем симметрию при переносе во времени. В стиле Пуанкаре мы называем Чикаго прошлого и Чикаго настоящего одним и тем же словом.