Читаем Фрактальная геометрия природы полностью

«Нет»: В те времена подобные разработки незамеченными не оставались. Они вошли в теорию автоморфных функций (см. главу18), прославивших Пуанкаре и Клейна. В этом же направлении работал и Поль Пенлеве (1863 – 1933), ученый, к которому прислушивались и люди, далекие от чистой математики. Пенлеве интересовался инженерным делом (он был первым пассажиром Уилбера Райта после несчастного случая с Орвиллом Райтом), а затем решил заняться политикой и даже побывал премьер-министром Франции. Кстати, обнаружив, что близким другом Пенлеве был Перрен, я склонен думать, что «мечтания», упомянутые во второй главе, не так уж оторваны от жизни.

«Да»: Кантор и Пуанкаре оказались, в конце концов, по разные стороны интеллектуальных баррикад – причем от едкого сарказма Пуанкаре пострадали и Кантор, и Пеано; чего стоит хотя бы вот такое знаменитое замечание Пуанкаре: «Канторизм обещает нам радости врача, исследующего интересный патологический случай». (См. также подраздел ЭРМИТ, с. 578.) Поэтому мне представляется уместным привести здесь свидетельство того, что когда возникла такая необходимость, Пуанкаре признал-таки, что присутствие классических чудовищ можно допустить пусть и не при описании видимой природы, но хотя бы в абстрактной математической физике. Ниже приводятся в моем вольном переводе выдержки из «Новых методов небесной механики» Пуанкаре ([477], том III, с. 389 – 390).

«Попробуем представить себе рисунок, образуемый двумя кривыми [C' и C"], соответствующими дважды асимптотическому решению задачи о трех телах. Точки их пересечения образуют нечто вроде бесконечно плотной … решетки. Каждая кривая нигде не пересекает самое себя, однако должна изгибаться весьма сложным образом для того, чтобы бесконечно часто пересекать каждый узел решетки.

Кривая эта, должно быть, поразительно сложна, и я даже не стану пытаться изобразить ее. Вряд ли что-либо другое может дать нам лучшее представление о сложности задачи о трех телах или вообще любой задачи динамики, для которой не существует полного набора интегралов …

Перечислим возможные предположения:

1) Множество S' (или S''), определяемое как кривая C' (или C'') плюс ее предельные точки заполняет полуплоскость. Если так, то Солнечная система неустойчива.


2) Множество S' (или S'') имеет положительную и конечную площадь и занимает ограниченную область плоскости с возможными "пустотами" …


3) И наконец, площадь множества S' (или S'') обращается в нуль. В этом случае мы имеем дело с аналогом канторовой пыли».

С целью укрепить впечатление, оставляемое этими незаслуженно забытыми строками, приведу еще несколько цитат (опять же в моем вольном переводе) из Адамара [187], Пенлеве [459] и Данжуа [101, 102].

Адамар: «Пуанкаре можно считать предтечей теории множеств в том смысле, что еще прежде, чем она была создана, он применил ее в одном из своих самых поразительных и наиболее справедливо знаменитых исследований. В самом деле, он показал, что особенности автоморфных функций образуют либо полную окружность, либо канторову пыль. Что касается последней категории, то у предшественников Пуанкаре не достало воображения даже представить себе что-либо подобное. Упомянутое множество представляет собой одно из важнейших достижений теории множеств, однако Пуанкаре опередил здесь и Бендикссона, и даже самого Кантора.

Примеры кривых, не имеющих касательных ни в одной точке, стали уже благодаря Риману и Вейерштрассу классическими. Существуют, однако, вполне очевидные различия между, с одной стороны, фактом, установленным посредством умственных упражнений развлекательного характера, проделанных с единственной целью, заключающейся в доказательстве принципиальной возможности установления этого самого факта – очередного экспоната на выставке чудовищ – и, с другой стороны, тем же фактом, но вытекающим из теории, которая опирается на самые обычные и простые задачи, составляющие самую сущность анализа».

Пенлеве: «Я должен настаивать на тех отношениях, что сложились на данный момент между теорией функций и канторовыми пылями. Последние построения были в свое время настолько новы по духу, что не у всякого редактора математического журнала доставало отваги публиковать исследования на эту тему. Многие читатели полагали такие исследования скорее философскими, нежели научными. Однако прогресс математики показал несостоятельность подобных суждений. В 1883 г. (году, дважды знаменательном для истории математики XIX в.) в «Acta Mathematica» поочередно публиковались работы Пуанкаре по функциям Фукса и Клейна и работы Кантора».

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература