Читаем Фрактальная геометрия природы полностью

Кольрауш [274] установил, что скорость разряда лейденской банки подчиняется той же закономерности, что и растяжение шелковых нитей: заряд уменьшается со временем по гиперболическому закону. В своей докторской диссертации Жак Кюри (брат и первый сотрудник Пьера Кюри) подробно рассмотрел поведение заряда в лейденской банке при замене стекла на другие диэлектрики и обнаружил, что одни диэлектрики дают экспоненциальное убывание заряда, другие же – гиперболическое с различными значениями показателя γ.

МАСШТАБНАЯ ИНВАРИАНТНОСТЬ: ЖИВУЧИЕ ПАНАЦЕИ ИЗ ПРОШЛОГО

На протяжении более чем стандартные лет в самых различных научных журналах с завидным постоянством публиковались бесчисленные попытки объяснения масштабно-инвариантных убываний и шумов. Все эти попытки являют собой довольно жалкое зрелище. Их безуспешность однообразна и предсказуема, поскольку они снова и снова – в различных контекстах и различными словами – упираются в одни и те же тупики, бесперспективность которых была осознана еще в начале XIX в.

Панацея смеси Хопкинсона. Столкнувшись с гиперболическим убыванием заряда в лейденской банке, Хопкинсон (кстати, ученик Максвелла) выдвинул в 1878 г. «приблизительное» объяснение, основанное на том, что «стекло можно рассматривать как смесь целого ряда различных силикатов, которые ведут себя по-разному». Это надо понимать так, что функция убывания, которая выглядит как гипербола, в действительности представляет собой смесь двух или более различных экспоненциальных функций вида exp(−s/τm), каждая из которых характеризуется своим значением времени релаксации τm . Однако даже из тогдашних экспериментальных данных можно видеть, что ни двух, ни четырех экспонент недостаточно для получения гиперболической функции, и аргументацию Хопкинсона сочли несостоятельной.

И все же она продолжает время от времени всплывать, как правило, при отсутствии достаточного для ее опровержения количества данных.

Панацея распределенных значений времени релаксации. Когда данные содержат многие десятичные разряды, в результате чего эмпирическая кривая оказывается представима только в виде смеси какого-нибудь нелепого количества экспоненциальных функций (скажем, 17 или 23), возникает искушение не останавливаться на полпути и рассмотреть возможность существования смеси бесконечного числа экспоненциальных функций. Согласно определению гамма – функции Эйлера, имеем

.

Из этого тождества следует, что если «интенсивность» времени релаксации τ экспоненциальной функции равна t−(γ+1), то смесь является гиперболической. Перед нами типичный пример логического круга. Предполагается, что на выходе научного объяснения мы должны получить нечто a priori менее очевидное, нежели имели на входе, однако в данном случае выражения t−γ и t−(γ+1) функционально идентичны.

Панацея переходного режима. Вторую по распространенности реакцию при встрече с симптомами масштабной инвариантности, описанными в предыдущем разделе, можно сформулировать следующим образом: все эти гиперболические функции t−γ объясняются, какими-либо переходными явлениями, если же наблюдать процесс убывания в течение достаточно долгого времени, то характер закономерности непременно изменится на гиперболический. Первую попытку систематического поиска «точки изменения» предпринял в 1907 г. фон Швейдлер [578]: сначала он измерял величину заряда на лейденской банке с интервалами в 100 секунд, затем интервалы постепенно становились больше, и общее время эксперимента составило 16 миллионов секунд (т.е. 200 суток – начался летом, закончился зимой!). Убывание оказалось гиперболическим, точка в точку. Позднее проводились эксперименты по измерению электрических 1/f - шумов (продолжительность опытов варьировалась от нескольких часов до нескольких дней). Результат - 1/f-убывание в поразительном большинстве случаев.

В предыдущих главах – в частности, при исследовании скоплений галактик в главе 9 – отмечалось, что ученые способны настолько погрузиться в поиски порогового значения, что их совершенно перестает занимать необходимость описания и объяснения феноменов, характерных для диапазона масштабной инвариантности. Как ни странно, инженерам также может быть свойственна чрезмерная увлеченность поисками порога, зачастую даже в большей степени. В главе 27 мы рассматривали предложенную мною модель речного стока, которую гидрологи не спешили брать на вооружение только потому, что в ней предполагается бесконечный порог масштабной инвариантности. Конечность порога в инженерном проекте не имеет абсолютно никакого значения, тем не менее, его пылко жаждут во всем остальном, казалось бы, вполне практичные люди.

МАСШТАБНАЯ ИНВАРИАНТНОСТЬ ПО ЛЕЙБНИЦУ И ЛАПЛАСУ

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература