А что же Кантор, Пеано, Кох и Хаусдорф? Разве первые трое, создавая свои «чудовищные» множества, не занимались, по сути, воплощением в действительность математических химер? И разве не следует нам рассматривать хаусдорфову размерность как шкалу для упорядочения этих самых химер? Сегодня математики не читают Лейбница и Канта, но в 1900 г. они это делали. Можно представить себе, например, как Хельге фон Кох, прочтя стихотворение Джонатана Свифта, приведенное в предыдущей главе, в разделе о Ричардсоне, строит свою снежинку таким приблизительно манером. Исходный треугольник, изображенный на рис. 70, он определяет как «большую блоху». Затем точно посередине каждого бока большой блохи помещает меньшую треугольную блоху; затем рассаживает еще меньших треугольных блох, где только можно на спинах старых или новых блох. И продолжает эту процедуру, «как говорят, ad infinitum». Я не знаю, насколько нарисованная мною картина близка к действительности, она лишь иллюстрирует мою мысль. Кох не мог впитать современных ему культурных течений, у истоков которых стоял не кто иной, как Лейбниц. А в пародии на Свифта находят свое отражение некоторые популярные толкования принципа Лейбница.
Теперь оставим математиков, занятых искусством ради искусства (и убежденных, говоря словами Кантора, в том, что «суть математики есть свобода»), и перейдем к людям, которые воспевают Природу, пытаясь ей подражать.
Уж они-то о химерах не мечтают, скажете вы – и будете не правы. Многие из них именно этим и занимаются. В главе 10 мы говорили о практических исследователях турбулентности, ломающих себе головы в попытке решить, концентрируется изучаемый ими процесс на «фасоли», на «спагетти» или на «салате», раздраженных тем, что ответ на вопрос зависит от способа задания вопроса, и под конец требующих каких-то «промежуточных» форм, природа которых объединяет в себе свойства линий и поверхностей. В главе 34 упоминается о другой группе искателей «промежуточного», обретающихся среди исследователей галактических скоплений; этим ученым приходится описывать текстуру определенных фигур как «потокообразную», хотя упомянутые фигуры совершенно ясно состоят из отдельных точек. Не будет ли уместным открыть этим трезвомыслящим искателям, искренне полагающим, что старинные письмена и древнегреческие кошмары не имеют к ним никакого отношения, глаза на то, что ступают они по проторенной дорожке, ведущей к химерам?
Еще одна ниточка, указывающая на родство между канторианцами и ричардсонианцами, обнаружилась как раз в исследованиях кластеризации звезд и галактик. Здесь нужно отметить, что тема эта весьма деликатна, и тому, кто решит заняться отысканием концептуальных корней, следует быть весьма осторожным, поскольку профессиональные астрономы терпеть не могут признавать наличия какого бы то ни было влияния со стороны всякого рода звездочетов – самоучек, «какими бы привлекательными и величественными не представлялись на первый взгляд их измышления» (цитируя Саймона Ньюкома). Этой нерасположенностью, наверное, и объясняется, почему авторство первой полностью описанной иерархической модели обычно приписывается Шарлье, астроному, а не Фурнье д'Альбу (см. соответствующий раздел главы 40) или Иммануилу Канту.
Замечания Канта об отсутствии однородности в распределении материи красноречивы и предельно ясны. Оцените эти блистательные строки (которые, спешу предупредить, вполне способны привить вам вкус к чтению книг вроде [258] или [438]): «Та часть моей теории, которая дает ей наибольшее очарование … включает в себя следующие идеи … . Вполне естественно … рассматривать туманные звезды как … совокупности многих звезд …. Их с полным правом можно считать целыми вселенными или, если можно так выразиться, Млечными Путями …. Можно далее предположить, что эти вышние вселенные каким-либо образом соотносятся одна с другой и посредством этого взаимного соотношения составляют еще более грандиозную совокупность, … которая, возможно, также является лишь одним из членов нового сочетания чисел! Мы видим только первые члены постепенно расширяющейся соотнесенности миров и совокупностей миров; и начало этой бесконечной прогрессии позволяет нам уже сейчас делать предположения относительно целого. Не существует пределов, лишь бездна … безграничная бездна».
Кант возвращает нас к Аристотелю и Лейбницу, а описанные ранее прецеденты могут объяснить, почему Кантор и Ричардсон так часто оказываются похожи друг на друга (по крайней мере, на мой взгляд). Для усиления драматического эффекта, позвольте мне обратиться к опере Верди «II Trovatore» и перефразировать кое-какие из последних слов Асусены, адресованных Луне, «Egl'era tuo fratello».
Эти великие вожди великих движений презирали друг друга и яростно сражались между собой, однако по своим интеллектуальным корням они – братья.