В серьезных научных работах давно уже не требуется обязательная ссылка на Аристотеля и Лейбница. Однако раздел этот, как ни странно, написан отнюдь не шутки ради. Некоторые фундаментальные понятия теории фракталов можно рассматривать как математическую реализацию тех восходящих еще к Аристотелю и Лейбницу идей, одновременно глубоких и широких, которые пронизывают всю нашу культуру и оказывают воздействие даже на людей, считающих себя невосприимчивыми к философским веяниям.
Первую нить я обнаружил у Бурбаки [49]: идея дробного интегро – дифференцирования, рассмотренного нами в главе 27, пришла Лейбницу в голову вскоре после того, как он разработал свою версию дифференциального исчисления и предложил обозначения
В то время как Лейбниц много размышлял о вышеупомянутых материях, Ньютону они, похоже, вовсе не приходили в голову – по крайней мере, в связи с дифференциальным исчислением – и тому есть веская причина. В самом деле (см. «Великую цепь бытия» Лавджоя [318]), Лейбниц глубоко и искренне верил в то, что он называл «принципом непрерывности» или «принципом полноты». Аристотель в свое время также исповедовал аналогичный принцип, полагая, что разница между любыми двумя живущими видами животных можно заполнить другими видами так, что один вид будет непрерывно перетекать в другой. Он весьма интересовался этими «промежуточными» видами животных и даже ввел для их обозначения особый термин (о котором я узнал от Дж. Э. Р. Ллойда) -
В принципе непрерывности находит свое отражение (или оправдание?) вера во всякого рода «недостающие звенья» и «переходные ступени», включая и химер в том смысле, какой это слово имело в греческой мифологии: тварей с львиными головами, козлиными телами, драконьими хвостами и вдобавок плюющихся огнем! (Наверное, не стоило мне говорить о химерах именно в этой книге. Если мне теперь случится прочесть где-нибудь, что мое эссе представляет собой фрактальное обоснование химерических понятий, я знаю, кого мне за это благодарить.)
Современная же атомистическая теория в поисках далеких предков стремится привлечь наше внимание к противоположной традиции в греческой философии, а именно – к учению Демокрита. И конфликт между этими двумя противоположными силами продолжает играть центральную созидательную роль в интеллектуальном развитии человечества. Отметим, что канторову пыль можно рассматривать в этой связи как своего рода миротворца, сглаживающего напряженность древнего парадокса: она является бесконечно делимой, но не непрерывной. А вот древнееврейская культурная традиция химер либо отвергает, либо вовсе игнорирует, что продемонстрировано под весьма удивительным углом в работе [532].
В биологических химер никто больше не верит, однако в данном случае это неважно. В математике идея Аристотеля находит приложение в интерполяции последовательности целых чисел отношениями целых чисел и далее – пределами отношений целых чисел. При таком подходе любой феномен, определяемый последовательностью целых чисел, является кандидатом на интерполяцию. Таким образом, к столь ранним рассуждениям о дробных дифференциалах Лейбница подтолкнула идея, составляющая суть его научного мировоззрения (и лежащая в основе его круговой упаковки, см. главу 18).