Это увлечение на всю жизнь началось с того, что в 1951 г. меня слегка заинтересовала закономерность, описывающая частотность употребления слов в речи, называемая законом Ципфа (см. главы 38 и 40), причем узнал я о ней из книжного обозрения. Сопутствующие обстоятельства представляются мне сейчас настолько символичными, что я начинаю сомневаться в том, так ли оно все и происходило. Упомянутое обозрение я выудил из корзины для ненужных бумаг одного «чистого» математика, имея в виду разжиться легким чтением на время поездки в парижском метро. Закон Ципфа оказалось несложным объяснить, а в качестве побочного эффекта моя работа поспособствовала рождению новой дисциплины – математической лингвистики. Однако изучение частотности употребления слов – это предприятие из разряда тех, что сами себя закрывают.
Как бы то ни было, последствия этого легкого интереса я продолжаю ощущать до сих пор. Осознав, что проделанная мною работа явилась (используя нашу теперешнюю терминологию) прецедентным исследованием полезности скейлинговых допущений, я начал обращать внимание на аналогичные эмпирические закономерности в различных областях человеческой деятельности, причем начал с экономики. Хотя этих закономерностей обнаруживается поразительно большое количество, в «организованной» науке принято считать их всего лишь незначительными отклонениями. Чем успешнее были мои объяснения упомянутых закономерностей, тем более явственно вырисовывался силуэт некого повсеместно распространенного феномена, который упорно отказывается признавать официальная наука и которому я мог на некоторое время посвятить свое время и энтузиазм.
Поначалу мои исследования заключались в обычном поиске подходящей порождающей модели, однако постепенно от такого подхода пришлось отказаться, так как я раз за разом сталкивался с ситуациями, когда малейшие изменения в, казалось бы, незначительных допущениях модели вызывали самые, что ни на есть кардинальные перемены в результатах предсказания. Например, многочисленные случаи появления гауссова распределения было принято «объяснять» с помощью стандартной центральной предельной теоремы – т.е. гауссово распределение представлялось как результат сложения многих независимых составляющих. Подобная аргументация обладала хоть какой-то объяснительной ценностью лишь постольку, поскольку исследователи – практики понятия не имели о всевозможных других центральных предельных теоремах, которые Поль Леви и прочие пионеры теории вероятности считали «патологическими». Между тем, изучение скейлинговых законов привело меня к убеждению, что естественным как раз является нестандартное центральное предельное поведение. К сожалению, как только стало ясно, что использование центральной предельной теоремы дает несколько возможных вариантов объяснения, такой подход потерял всю свою привлекательность и убедительность. Едва ли объяснение способно что-либо объяснить, если оно оказывается сложнее своего результата и если из равновероятных исходных вариантов следуют абсолютно различные предсказания.
Исследование последствий самоподобия принесло немало удивительных сюрпризов и помогло мне лучше разобраться в принципах устройства природных конструкций. И напротив, путаные рассуждения относительно причин масштабной инвариантности почти ни к чему хорошему не привели. Бывали дни, когда упомянутые рассуждения казались мне ничуть не лучше бредовых разглагольствований Ципфа о принципе наименьшего усилия (см. с. 559).
Настроение это еще усугубилось всплеском нового интереса к модели почти скейлинга в таксономии, первоначально предложенной Юлом в работе [613]. Интересующиеся были уверены, что данная модель предлагает универсальное объяснение любому проявлению масштабной инвариантности в общественных науках. Источником этой уверенности стала банальная техническая ошибка, и я не замедлили на это указать, однако многие из моих тогдашних читателей почему-то лишь укрепились во мнении, что масштабно-инвариантные соотношения в общественных науках имеют исчерпывающее универсальное объяснение и, следовательно (!), не заслуживают внимания.