Читаем Фрактальная геометрия природы полностью

Для того чтобы показать, что глобальный порядок может быть порожден силами, действующими исключительно между соседними элементами, я придумал пример, описанный на с. 452. Вскоре мне указали на то, что в моем примере действует так называемый «клеточный автомат» в том виде, в каком этот термин определен Джоном фон Нейманом (см. [621]). Улам показал (снова см. [621]), что выход такого автомата может быть очень сложным и выглядеть случайным. В других работах [669, 670, 667] показано, что этот выход может быть и фрактальным.

Итерации отображенияz→z2−μв комплексных числах: новые результаты и доказательства

В [650] включено много иллюстраций, для которых не хватило места в главе 19, и дополнительных наблюдений. Выход статьи [401] несколько задержался и ожидается в 1983 г.

Два важных наблюдения из главы 19 нашли теперь математическое подтверждение.

В работах [628, 627] путем отображения множества внешних точек M на множество внешних точек круга доказано, что замкнутое множество M и в самом деле связно.

В [659] доказано, что хаусдорфова мера дракона Жюлиа является аналитической функцией от параметра μ.

Квадрирующие отображения в кватернионах

В главе 19 установлено, что свойства отображения z→z2−μ при вещественных значениях z удобнее всего рассматривать как особые случаи этого же отображения при комплексных z и μ, и что итерации при комплексных z порождают неожиданные и весьма интересные картины. Таким образом, представляется естественным воспользоваться для углубления понимания и получения еще более красивых образов дальнейшим обобщением величины z. А Нортон предположил, что следующим наиболее естественным окружением могли бы стать гамильтоновы кватернионы. Введенные в 1847 г., кватернионы хорошо знакомы как математикам, так и физикам, однако до сей поры им доставались лишь второстепенные роли. В контексте же итераций концепция кватернионов оказалась необычайно плодотворной как с математической, так и с эстетической точки зрения – подробный отчет читатель найдет в выходящих вскоре работах, моих и Нортона.

Против кватернионов имеются и возражения. Одно из них, например, заключается в следующем: комплексные числа вводят пространство E=1 в пространство E=2, которое можно представить визуально, в то время как кватернионы связаны с переходом к пространству с E=4, которое визуально представить невозможно. Еще одно возражение: умножение кватернионов не коммутативно, т.е. если z является кватернионом, то отображения z→λz(1−z), z→z2−μ, z→μz2−1 и z→μαz2μ1−α различны.

Для иллюстрации топологических взаимосвязей фрактальных репеллеров квадратичного отображения в кватернионах в работе [655] разработаны новые компьютерно – графические методы. Множества всех кватернионов, не уходящих при итерациях в бесконечность, рассматриваются в трехмерных сечениях. Сечения таких множеств комплексной плоскостью являются фрактальными драконами, описанными в главе 19.

Некоммутативность же умножения кватернионов совершенно неожиданно превратилась в большое преимущество. Для объяснения смысла этого преимущества рассмотрим рис. С5. Вопрос: соединяются ли друг с другом в пространстве кватернионов все или хотя бы некоторые темно-желтые области дракона? Ответ: в общем случае, каждый из вариантов записи, z→z2−μ или z→λz(1−z) (до перехода к кватернионам), вызывает появление совершенно различных связей между темно-желтыми областями. Следовательно, для более конкретного описания топологических взаимосвязей необходимы дополнительные данные.

В качестве менее запутанного примера рассмотрим рисунок, помещенный на с. 655; он представляет собой несколько адаптированный вариант иллюстрации из [655] и изображает простой случай с циклом, равны 4. Каждый большой сегмент дракона, полученный при сечении его комплексной плоскостью, вложен в соответствующий сегмент пространственной фигуры. В данном примере большие пространственные сечения являются почти инвариантными при вращении; они окружены многочисленными нетугими поясами, соединяющими малые сечения дракона. На рис. 8 представлен другой пространственный фрактал, полученный приблизительно таким же способом. У Стейна [662] можно найти еще несколько подобных иллюстраций.

Универсальность и хаос:z→λ(z−1/z)и другие отображения

С. Латте, современник Фату и Жюлиа, выделил отношение четвертого порядка полиномов, итерации которых «хаотичны» на всей плоскости, т.е. не притягиваются ни к какому меньшему множеству. Этот пример побуждает нас заняться поисками хаотического поведения в отображениях низшего порядка. Кроме того, в настоящем разделе рассматриваются классы универсальности для формы островов при λ - отображениях.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература