Читаем Фрактальная геометрия природы полностью

Поскольку факты установлены, невредно было бы поразмышлять об их возможных причинах. Мы полагаем, что разлом можно рассматривать как некую нетипичную форму перколяции. Известно, что, по мере того, как образец растягивается в разные стороны, полости, которые неизбежно присутствуют в образце вокруг посторонних включений, увеличиваются в размерах; в конце концов, эти полости сливаются между собой и разделяют образец на части. Если бы увеличение размеров той или иной полости не зависело от места ее расположения, мы получили бы перколяцию, подобную описанной в главе 13. Следовательно, размерность поверхности разлома принимала бы некое универсальное значение, не зависящее от материала. В действительности же, как только исходная полость дорастет до слияния с соседними полостями, возрастает нагрузка на оставшиеся связи и последующая скорость роста полости изменяется в зависимости от ее положения в образце. Эти изменения, безусловно, напрямую зависят от структуры материала, и, следовательно, размерность D совсем не обязана быть универсальной.

Формы облачных и дождевых областей [646, 648]

Глядя на замечательное соотношение Лавджоя, связывающее площадь и периметр облаков (см. рис. 169), невольно задаешься вопросом, нельзя ли в этом случае проделать то же, что мы проделали в главе 28 с земным рельефом, - я имею в виду построение фрактальных карт облачных и дождевых областей, которые нельзя будет ни вооруженным глазом, ни с помощью каких-либо измерений отличить от настоящих метеорологических карт.

Важный ингредиент для случая дождевых областей находим у самого Лавджоя [646], который обнаружил, что промежутки между выпадениями осадков следуют в точности тому же гиперболическому распределению вероятностей, что и разрывности в изменении цен на товарных биржах согласно [341] (см. главу 37).

Наше с Лавджоем совместное исследование [648] построено именно на этом фундаменте. Мы показываем, что гиперболически распределенные разрывности вполне согласуются с широко известным наблюдением, что разрывности в выпадении осадков возникают вдоль почти прямолинейных «фронтов». Для сохранения масштабной инвариантности вводится соответствующий перечень показателей, напоминающий те, что используются в теории критических феноменов, и в еще большей степени показатели турбулентности, предложенные в моей работе [387]. Полученные результаты, надо сказать, вызывают самые положительные эмоции.

Масштабная инвариантность, фракталы и землетресения [637, 638, 639, 619]

В главе 28 мы говорили о том, что земной рельеф представляет собой масштабно-инвариантную фрактальную поверхность и его можно генерировать посредством наложения грубых «ошибок». Тем, кто согласен с подобными утверждениями, гораздо легче принять идею того, что землетрясения (которые представляет собой не что иное, как динамические изменения рельефа) самоподобны, т.е. закономерности, описывающие время их возникновения, территориальный охват и силу, не связаны с каким-либо особым масштабом, а геометрия землетрясений фрактальна. Идея эта является главным посланием, которое вынесет для себя интересующийся фракталами читатель из ознакомления с работами [637, 638, 639, 619] (рекомендую).

А для усмирения гордыни советую подумать о том, что масштабную инвариантность землетрясений обнаружил Омори еще сто лет назад; впрочем, авторы большинства статистических исследований землетрясений по-прежнему настаивают на том, что возникновение землетрясений следует пуассоновскому распределению. Что ж, вряд ли следует ожидать чего-то хорошего (о чем я уже рассуждал в главе 42), когда наука уступает общественному давлению, которое поощряет моделирование и теоретизирование и презирает «простое» описание без «теории».

Фрактальные границы в литиевых аккумуляторах [644, 645]

Электрическому аккумулятору полагается хранить электроэнергию в больших количествах и выдавать ее с нужной скоростью. Так как остальные характеристики зафиксированы, аккумулирующая способность зависит только от объема аккумулятора, скорость же разрядки является характеристикой поверхностей. Об этом знает всякий, кто знаком с фракталами (см. главы 12 и 15), и отсюда же Ален Ле Меоте заключил, что достижение баланса между аккумулирующей способностью и скоростью разрядки являет собой фрактальную задачу.

Поскольку нет никакой возможности реализовать на практике аккумулятор, поперечное сечение которого являлось бы терагоном Пеано (таким, например, как на рис. 106), Ле Меоте с сотрудниками [645] проводил теоретические исследования всевозможных реалистичных конструкций и изучал настоящие аккумуляторы. Поразительна эффективность фрактальной геометрии.

Критические перколяционные кластеры

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература