Читаем Фрактальная геометрия природы полностью

В работе [652] мы подкрепляем это неформальное ощущение многочисленными экспериментальными данными, полученными при испытаниях на растяжение образцов из сталей 1040, 1095 и Cor−99 и на ударное разрушение образцов из мартенситно - стареющей стали. Применяя методы, аналогичные тем, с помощью которых в главах 5 и 28 исследуется рельеф, мы убедились во фрактальном характере поверхностей разлома и оценили значения размерности D. То, что применение этих методов оказалось успешным, весьма примечательно, так как поверхности разлома явно негауссовы и совсем не похожи на рельеф.

Напомним, что в главах 5 и 28 мы пользовались береговыми линиями островов и вертикальными сечениями. К сожалению, в естественных поверхностях разлома острова не наблюдаются, а определение вертикали (т.е. такого направления, при котором высота точки является однозначной функцией от ее положения на горизонтальной плоскости) очень редко подходит к какому-либо направлению.

Тем не менее, мы вполне можем определить неформальную вертикаль с помощью условия, согласно которому высота точки будет однозначной функцией для «большинства» точек. Затем мы проводим спектральный анализ высот прямолинейных горизонтальных сечений и строим график логарифма спектральной энергии на частотах, превышающих f как функции от логарифма f.

Кроме того, оказывается полезным создавать искусственные «острова», «разрезая» образец параллельно почти горизонтальным плоскостям (при подготовке образца его сначала покрывают никелем с помощью метода химического восстановления, а затем закрепляют на эпоксидном основании методом вакуумной пропитки). Далее, используя мерный стержень некоторой фиксированной длины, мы определяем площадь каждого острова и его периметр на оцифрованном изображении и строим дважды логарифмические графики (как показано в главе 12) для того, чтобы убедиться в правильности нашего анализа фрактальных размерностей.

Взглянув на рисунки на с. 597 (слева и в центре), читатель может самостоятельно убедиться в том, что многие поверхности разлома укладываются во фрактальную модель с поразительной точностью: оба графика почти прямолинейны, а их угловые коэффициенты дают, в сущности, одинаковые размерности D . Более того, при повторении описанной процедуры на других образцах из того же металла получается то же значение D. И напротив, традиционные оценки степени шероховатости весьма сложно воспроизвести.

Перефразируя замечание, приведенное на с. 164 по поводу рис. 169, можно сказать, что не много существует металлургических графиков, которые учитывали бы все доступные данные в столь обширном диапазоне размеров, и были бы при этом хоть приблизительно такими же прямолинейными.

Экспериментальные данные оказываются настолько хороши, что мы можем сразу же перейти к более тонкому сопоставлению. Согласно наблюдениям, значения разности |D(спектральная)−D(береговой линии островов)| систематически составляет величину порядка нескольких сотен. Первое возможное объяснение заключается в погрешности оценки. Например, высокочастотная область спектра содержит огромное количество постороннего шума, а значит, ее принимать в рассмотрение не следует. Кроме того, мы весьма вольно обходимся с «озерами» и «прибрежными островами»: включаем первые и исключаем вторые, поскольку они должным образом не определены.

Однако расхождение может быть вызвано и вполне реальными причинами. По сути дела, почти идентичность значений D наводит на мысль, что исследуемые материалы оказались гораздо более изотропными, нежели мы предполагали. Если же рассмотреть образцы, которые просто обязаны быть анизотропными (исходя из метода их получения), то мы увидим, что значения D спектра и D береговой линии островов и в самом деле очень различны.

Альтернативная причина конфликта размерностей заключается в том, что поверхность разлома может быть изотропной, но не самоподобной – в этом случае величина D будет изменяться в зависимости от размеров образца (см. главу 13). Поскольку, согласно нашим двум методам, различным диапазонам масштабов соответствуют различные веса, можно заключить, что эти методы отражают реальное изменение размерности D. В самом деле, в некоторых изученных нами образцах островные и спектральные диаграммы демонстрировали явно различные прямолинейные зоны, а для некоторых других металлов диаграммы оказались еще более сложными.

Для определения связи размерности D с другими характеристиками металла мы взяли образцы из мартенситно – стареющей стали марки 300 для испытаний на ударное разрушение по Шарпи и подвергли их нагреву до различных температур. Полученный в результате график, показанный и на с. 597 (справа) демонстрирует несомненное наличие связи между энергией удара и значением D.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература