Задача Какутани - Гомори.
Какутани (источник — частная беседа) предлагает выбратьРИС. 101 И 102. ПРОХОЖДЕНИЯ КВАДРАТА И ДРАКОНА
Генератор здесь тот же, что и для предыдущих кривых, однако незначительные, на первый взгляд, изменения в других правилах оказывают значительное влияние на результат.
Прохождение квадрата по Пеано, более поздний вариант.
Инициатор отрезок [0, 1], а второй, четвертый и шестой этапы построения выглядят следующим образом:
Эффективность. Экстремальное свойство.
Эта кривая заполняет область, площадь которой равна 1, тогда как кривые на рис. 98 и 99, а также кривая дракона, которую мы рассмотрим ниже, покрывают лишь 1/2 или 1/4. Если терагоны лежат на прямоугольной решетке, покрываемая ими область не может превышать 1. Этого максимума она достигает лишь в случае терагонов без самопересечений. Иными словами, отсутствие самокасаний важно не только с эстетической точки зрения, а самокасающаяся кривая со срезанными точками самокасаний (как на рис. 95) не становится от этого эквивалентной кривой Коха без самопересечений.Взяв только нечетные этапы построения данного прохождения квадрата и соединив средние точки последовательных отрезков терагонов (чтобы избежать самокасаний), мы возвратимся к кривой Пеано, вариант Гильберта.
Рис. 102. Кривая, заполняющая прямоугольную трапецию.
Изменим генератор таким образом, чтобы он представлял собой ломаную, составленную из двух неравных отрезков под прямым углом друг к другу. Избегающее самопересечений построение аналогично построению кривой на предыдущем рисунке.Дракон Хартера-Хейтуэя.
(См. [162] и [95].) Инициатор — отрезок [0, 1], генератор — как в начале пояснения к рис. 98. Генератор поочередно занимает правое и левое положение относительно терагона. Единственное отличие от построения прохождения треугольника по Пойа заключается в том, что на всех этапах построения генератор помещается справа от начального отрезка кривой. Ниже показаны третий и четвертый этапы построения:Последствия этого незначительного изменения выглядят весьма впечатляюще:
На этой иллюстрации нельзя различить саму кривую, мы видим лишь ее границу, которая называется кривой дракона. Таким образом, эта кривая Пеано имеет полное право называться прохождением дракона. Как и любая другая кривая Коха, инициатором которой служит отрезок [0, 1], дракон самоподобен. Кроме того, отчетливо видно, что дракон разделен на части, соединяющиеся между собой тонкими переходами. Эти части подобны друг другу, но не целому дракону.
Двойной дракон.
Во «Фракталах» 1977 года отмечалось, что при таких «драконовских» правилах построения данной кривой более естественным инициатором представляется последовательность отрезков [0, 1] и [1,0]. Фигуру, которую в итоге заполняет кривая, я назвал двойным драконом. Эта фигура получила числовое представление в [272]. Выглядит она вот так (один дракон — черный, другой — серый):Река двойного дракона.
Стерев (ради удобства рассмотрения) мелкие притоки, получим древовидную реку двойного дракона:Двойного дракона можно разбить на его уменьшенные подобия
Шкура двойного дракона. Шкура представляет собой кривую Коха со следующим генератором:
Размеры длинного и короткого отрезков составляют соответственно