Читаем Фрактальная геометрия природы полностью

Внутренняя область квартета заполняется, конечно же, и его собственным деревом рек. Однако если воспользоваться каким-либо из следующих генераторов, можно получить совершенно другие варианты заполнения:

Терагоны, построенные с использованием левого генератора, демонстрируют самокасания (как и кривые в первом примере данного пояснения). Заполняемая площадь составляет 1/2. Правый генератор позволяет терагонам избежать самокасаний, и заполняемая площадь увеличивается до 1. На рис. 110 (внизу) показан один из продвинутых терагонов такой кривой.

8 ФРАКТАЛЬНЫЕ СОБЫТИЯ И КАНТОРОВА ПЫЛЬ

Основная цель этой главы — по возможности безболезненное — но достаточно подробное — ознакомление читателя с еще одним математическим объектом из тех, что обычно рассматриваются как патологические, — с канторовой пылью, С. Фрактальная размерность канторовой пыли и других родственных ей пыльных структур, которые мы здесь рассмотрим, находится в интервале от 0 до 1.


Так как эти структуры образованы точками на прямой, их сравнительно легко изучать. Кроме того, с их помощью можно в наипростейшей форме представить некоторые понятия, занимающие центральное место в теории фракталов, но настолько редко применявшиеся в прошлом, что для их обозначения даже не было придумано терминов. Начнем с термина «пыль», который теперь приобретает специальный смысл как неформальный эквивалент термина «множество, топологическая размерностьDT которого равна 0» (так же, как «кривая» и «плоскость» означают множества, топологическая размерность которых равна, соответственно, 1 и 2). Другие новые термины — такие, например, как творог, пауза и трема — будут объяснены ниже.

ШУМ

Обычный человек называет шумом звук, который либо слишком силен, либо не имеет подходящего ритма или ясной цели, либо просто мешает слушать более приятные звуки. Партридж [463] заявляет, что слово «шум» «происходит от латинского nausea «тошнота» (родственного латинскому же nautes «моряк»); можно легко проследить семантическую связь, представив себе звуки, издаваемые толпой пассажиров древнего корабля, попавшего в бурю». («Оксфордский словарь английского языка», похоже, имеет на этот счет другое мнение.) Что до современной физики, то она определяет термин «шум» (менее живописно и далеко не так точно) как синоним случайных флуктуаций или ошибок независимо от их происхождения или проявлений. Канторова пыль С в этой главе вводится через изучение прецедента, а в роли прецедента выступает несколько эзотерический, но довольно простой шум.

ОШИБКИ В ЛИНИЯХ ПЕРЕДАЧИ ДАННЫХ

Канал передачи — это некая физическая система, способная передавать электрический сигнал. Однако электрический ток, к сожалению, не свободен от спонтанных шумов. Качество передачи зависит от вероятности возникновения ошибок, обусловленных шумовыми искажениями, которые, в свою очередь, зависят от отношения интенсивности сигнала и шума.

В этой главе мы будем говорить о каналах, по которым данные передаются между компьютерами и используются чрезвычайно сильные сигналы. Интересная особенность заключается в том, что сигнал дискретен; следовательно, распределение шумов донельзя упрощается распределением ошибок. Шум представляет собой некую функцию, которая может иметь множество значений, в то время как функция ошибок может иметь только два возможных значения. В ее роли может выступать, скажем, характеристическая функция, которая при отсутствии ошибок в некий момент времени t равна 0, а при наличии ошибки принимает значение 1.

Физики уже разобрались в структуре шумов, которые преобладают в случае слабых сигналов (тепловой шум, например). Однако в вышеописанной задаче сигнал настолько силен, что классическими шумами можно пренебречь.

Что касается тех шумов, которыми пренебречь нельзя, — избыточных шумов — они сложны и захватывающи, потому что о них почти ничего не известно. Мы рассмотрим один такой избыточный шум, который приблизительно в 1962 году настолько заинтересовал инженеров- электриков, что для его изучения потребовалась помощь различных специалистов в других областях. Я также внес свой скромный вклад в общее дело — занимаясь именно этой конкретной практической задачей, я впервые ощутил нужду во фракталах. Никто в то время даже отдаленно не представлял себе, насколько далеко заведет нас тщательное изучение этой, казалось бы незначительной, инженерной проблемы.

ПАКЕТЫ И ПАУЗЫ

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература