Читаем Фрактальная геометрия природы полностью

Фрактальная размерность D канторова множества может изменяться в пределах от 0 до 1; с топологической же точки зрения все канторовы множества имеют размерность 0, так как, по определению, любая точка канторова множества отделена от любой другой, причем для ее отделения не требуется ничего удалять. С этой стороны нет никакой разницы между C и конечным множеством точек! Тот факт, что топологическая размерность DT в последнем случае равна 0, известен нам из стандартной геометрии; мы даже используем это обстоятельство в главе 6 для доказательства того, что топологическая размерность кривой Коха K равна 1. Вообще, DT=0 для любого вполне несвязного множества.

При отсутствии общепринятого обыденного термина, вроде «кривой» и «плоскости» (которые представляют собой связные множества с размерностями DT=1 и DT=2, соответственно), я предлагаю называть множества с DT=0 пылью.

РАСПРЕДЕЛЕНИЕ ДЛИН ПАУЗ

Возьмем канторову пыль и обозначим через и возможное значение для длины паузы, через U — неизвестную длину паузы, а через Nr(U>u) — количество пауз или трем длины U, большей, чем u. < Это обозначение построено по аналогии с обозначением Pr(U>u) из теории вероятности. ► Оказывается, существует постоянный префактор F — такой, что график функции Nr(U>u) постоянно пересекает график Fu−D. И вновь в дело вступает размерность. Приняв за координаты lnu и lnNr, получим однородные ступени.

СРЕДНЕЕ КОЛИЧЕСТВО ОШИБОК

Как и в случае береговых линий, можно получить приблизительное представление о последовательности ошибок, если остановить канторо- во створаживание при длине интервалов ε=3−k. Эта величина может быть равна времени, необходимому для передачи единичного символа. Кроме того, следует использовать канторову периодическую экстраполяцию с большим, но конечным значением Ω.

Количество ошибок между моментами времени 0 и R (которое мы обозначим через M(R)) выдерживает ритм, так как учитываются только те моменты, в которые происходит что-то важное. Хороший пример фрактального времени.

Если сигнал начинается в момент времени t=0 (а мы рассматриваем только этот случай), величина M(R) ведет себя так же, как в случае кривой Коха. Пока R остается меньше 0, количество ошибок удваивается всякий раз, когда R увеличивается в 3 раза. В результате имеем M(R)∝RD.

Это выражение похоже на стандартное выражение для массы диска или шара радиуса R в D-мерном евклидовом пространстве. Оно также идентично выражению, полученному в главе 6 для кривой Коха.

В качестве вывода можно заметить, что среднее количество ошибок на единицу длины приблизительно пропорционально RD−1 при условии, что R находится в интервале между внутренним и внешним порогами. При конечном Ω уменьшение среднего количества ошибок продолжается до окончательной величины ΩD−1 которая достигается при R=Ω. После этого их плотность остается более или менее постоянной. При бесконечном Ω среднее количество ошибок уменьшается в конечном счете до нуля. Наконец, эмпирические данные часто предполагают, что величина Ω конечна и очень велика, однако не позволяют определить ее со сколько-нибудь приемлемой точностью. В этом случае среднее количество имеет некоторый нижний предел, который не обращается в нуль, но его неопределенность лишает его какого бы то ни было практического смысла.

КОНЦЕВЫЕ ТОЧКИ ТРЕМ И ИХ ПРЕДЕЛЫ

< Наиболее заметные члены множества C, концевые точки трем, вовсе не исчерпывают всего множества; скажем больше, они составляют лишь малую его часть. Физическую значимость других точек мы обсудим в главе 19. ►

ИСТИННАЯ ПРИРОДА КАНТОРОВОЙ ПЫЛИ

Читателю, который продержался до этого места и/или/ наслышан об активно сейчас обсуждаемых в научной литературе чертовых лестницах (см. пояснение к рис. 125), возможно, будет сложно поверить в то, что, когда я начал работу над этой темой в 1962 г., все вокруг были единодушны в том, что канторова пыль по меньшей мере столь же чудовищна, как кривые Коха и Пеано.

Каждый уважающий себя физик автоматически «выключался» при одном только упоминании имени Кантора, порывался убежать за тридевять земель от всякого, заявляющего о научной ценности множества C, и всех желающих слушать с готовностью уверял в том, что все подобные заявления были приняты, рассмотрены и найдены беспочвенными. Поддержали меня в то время только предположения С. Улама (совершенно завораживающие, несмотря на отсутствие должной проработки и неприятие научной общественностью) относительно возможной роли канторовых множеств при изучении гравитационного равновесия в звездных скоплениях (см. [570]).

Чтобы опубликовать работу о канторовой пыли, мне пришлось убрать из нее всякое упоминание имени Кантора!

Однако случилось так, что Природа сама привела нас к множеству C. В главе 19 мы поговорим еще об одной, совершенно иной, физической роли для C. Все это призвано подчеркнуть, что истинная природа канторовой пыли весьма разнообразна.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература