Читаем Фрактальная геометрия природы полностью

Предполагается, что эти термины будут использоваться не только в их математическом значении, но для выражения их физического смысла. Створаживанием можно называть любой каскад неустойчивых состояний, приводящий в итоге к сгущению вещества, а термин творог может определять объем, внутри которого некая физическая характеристика становится — в результате створаживания — чрезвычайно концентрированной.

Этимология. Слово «творог» происходит от древнеанглийского crudan «давить, жать, сильно толкать». Не следует думать, будто эта маленькая демонстрация эрудиции, позаимствованной у Партриджа [463], является абсолютно бесполезной — этимологические родственники творога несомненно интересуют нас с фрактальной точки зрения (см. гла- ву 23).

Обратите внимание на цепочку свободных ассоциаций: творог > сыр > молоко > Млечный Путь > Галактика (греч. “гала” переводится как «молоко») > галактики. Термин створаживание пришел мне в голову, когда я занимался как раз галактиками, и этимологическая подоплека «галактического створаживания» весьма меня заворожила.

ВНЕШНИЙ ПОРОГ И ЭКСТРАПОЛИРОВАННАЯ КАНТОРОВА ПЫЛЬ

В качестве прелюдии к экстраполяции множества C давайте припомним кое-что из истории. Кантор представил миру множество C, едва покинув поле своей прежней деятельности — изучение тригонометрических рядов. Поскольку такие ряды тесно связаны с периодическими функциями, единственная доступная им экстраполяция заключается в бесконечном повторении. Вспомним теперь такие говорящие термины, как внешний и внутренний предел, которые мы в главе 6 позаимствовали из теории турбулентности. Под этими терминами понимают размеры ε и Ω, соответственно наименьшего и наибольшего элемента множества, — можно сказать, что Кантор решил ограничиться порогом Ω=1. На k-м этапе построения ε=3−k, однако для самого C порог ε=0. Для получения любого другого Ω<∞ — например, приличествующего ряду Фурье значения , — необходимо увеличить периодическую канторову пыль в Ω раз.

Однако при таком повторении разрушается самоподобие, которым мы в настоящем эссе весьма дорожим. Чтобы этого избежать, следует соблюсти два простых правила: инициатор используется только для экстраполяции, а сама экстраполяция происходит в виде обратного или восходящего каскада. На первом этапе множество C увеличивается в 1/r=3 раза и размещается на интервале [0, 3]. В результате получаем множество, включающее в себя множество C и его копию, смещенную вправо и отделенную от C новой тремой, длина которой равна 1. На втором этапе увеличиваем получившееся множество снова в 3 раза и размещаем результат на интервале [0, 9]. Получаем множество C плюс три его копии, смещенные вправо и разделенные двумя новыми тремами длины 1 и одной новой тремой длины 3. Дальнейшие этапы восходящего каскада увеличивают множество C с возрастающим коэффициентом подобия вида 3k.

При желании можно чередовать, скажем, два этапа интерполяции и один этап экстраполяции и т. д. При таком построении каждая серия из трех этапов увеличивает внешний порог Ω в 3 раза и уменьшает внутренний порог ε в те же 3 раза.

< Отрицательная ось в такой экстраполированной пыли остается пустой — бесконечная трема. Соответствующее понятие мы обсудим позже, в главе 13, где мы рассмотрим (бесконечные) континенты и бесконечные же кластеры. ►

РАЗМЕРНОСТИ D В ИНТЕРВАЛЕ ОТ 0 ДО 1

Множество, полученное в результате бесконечных интерполяции и экстраполяции, самоподобно, а его размерность

D=lnN/ln(1/r)=ln2/ln3~0,6309

представляет собой дробь в интервале от 0 до 1.

Изменяя правила створаживания, мы можем получить другие значения D — собственно, любое значение между 0 и 1. При длине тремы первого этапа 1−2r, где 0, имеем размерность ln2/ln(1/r).<1>

При N≠2 становится доступным еще большее разнообразие. Для множеств c N=3 и r=1/5 находим

D=ln3/ln5~0,6826.

Для множеств c N=2 и r=1/4

D=ln2/ln4=1/2.

Для множеств c N=3 и r=1/9 получаем тот же результат:

D=ln3/ln9=1/2.

Хотя размерности двух последних множеств равны, «выглядят» они очень по-разному. Об этом наблюдении мы будем подробнее говорить в главе 34, где оно приведет нас к концепции лакунарности.

Обратите внимание также на то, что для любого D<1 есть по крайней мере одно канторово множество, однако поскольку Nr≤1 и, как следствие, N≤1/r, нет ни одного множества, размерность D которого превышала бы 1.

МНОЖЕСТВО С НАЗЫВАЕТСЯ «ПЫЛЬЮ», ПОТОМУ ЧТО ЕГО ТОПОЛОГИЧЕСКАЯ РАЗМЕРНОСТЬ DT РАВНА НУЛЮ

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература