Несомненно, в большинстве случаев само множество
Рис. 120 и 121. КАНТОРОВЫ ТРОИЧНЫЕ ГРЕБЕНЬ И БРИКЕТ (РАЗМЕРНОСТЬ ГОРИЗОНТАЛЬНОГО СЕЧЕНИЯ
Инициатором для канторовой пыли служит интервал [0, 1], а генератор имеет следующий вид:
Рис. 120.
Канторову пыль необычайно трудно изобразить на рисунке, так как она настолько тонка и разрежена, что практически невидима. Для получения хоть какого-нибудь представления о ее форме, утолщим исходный интервал и назовем результат канторовым гребнем. < Строго говоря, у нас получится декартово произведение канторовой пыли длины 1 на отрезок длины 0,03. ►Створаживание.
Построение канторова гребня описывается процессом, который я назвал створаживанием. Сначала изобразим стержень круглого сечения (в проекции получится прямоугольник с соотношением «высота/длина», равным 0,03). Удобнее всего представить, что материал, из которого изготовлен стержень, имеет очень малую плотность. Затем материал стержня начинает «створаживаться», смещаясь из средней трети стержня к его крайним третям, причем положение последних остается при этом неизменным. При дальнейшем створаживании вещество уходит из средних третей каждой из крайних третей уже в их собственные крайние трети и так далее до бесконечности. В пределе мы получим бесконечно большое количество бесконечно тонких пластин бесконечно большой плотности. Эти пластины распределены вдоль прямой весьма особенным образом, обусловленным производящим процессом. На рисунке створаживание остановлено на этапе, соответствующем предельному разрешению как типографского пресса, так и человеческого глаза, — последняя строка неотличима от предпоследней; каждый из элементов последней строки выглядит просто как темная линия, тогда как на самом деле представляет собой две тонкие пластины, разделенные пустым промежутком.Канторов брикет.
Выберем в качестве исходного объекта для створаживания круглый корж, толщина которого значительно меньше его диаметра, и пусть тесто при створаживании разделяется на более тонкие коржи (освобождая место для соответствующей начинки). В результате получим этакий бесконечно экстраполированный «наполеон», который можно назвать канторовым брикетом.Кольца Сатурна.
Раньше считалось, что Сатурн окружен одним сплошным кольцом. Затем была открыта щель, разделяющая кольцо, потом еще одна, и наконец «Вояджер-I» обнаружил огромное количество таких щелей, в большинстве своем очень узких. «Вояджер» также установил, что кольца прозрачны: они пропускают солнечный свет... как и подобает множеству, названному нами «тонким и разреженным».Таким образом, структура колец (см. [542], особенно иллюстрацию на обложке) являет собой, по всей видимости, совокупность близко расположенных окружностей, причем радиус каждой из этих окружностей соответствует расстоянию от некоторой точки отсчета до некоторой точки канторовой пыли. < Специальное название для такого множества — декартово произведение канторовой пыли на окружность. Вообще говоря, мы, наверное, получим более близкую к оригиналу картинку, если умножим окружность на пыль положительной меры, подобную тем, что рассматриваются в главе 15. ► Добавление в последнюю минуту: та же идея независимо от меня озарила и авторов [10], только они соотнесли ее с уравнением Хилла; в Примечании 6 к упомянутой работе содержится немало других соображений по существу вопроса.
Спектры.
Хартер описывает в [199] спектры некоторых органических молекул; сходство этих спектров с канторовой пылью потрясает.Рис. 121.
Этот рисунок помогает яснее представить форму канторовой пыли посредством помещения ее среди остальных пылевидных множеств сЗнаменитый греческий парадокс.
Греческие философы полагали, что условием неограниченной делимости тела является его непрерывность. Очевидно, они ничего не знали о канторовой пыли.Рис. 125. ФУНКЦИЯ КАНТОРА, ИЛИ ЧЕРТОВА ЛЕСТНИЦА (РАЗМЕРНОСТЬ D=1, РАЗМЕРНОСТЬ МНОЖЕСТВА АБСЦИСС ПОДСТУПЕНЕЙ D ~ 0,6309). КАНТОРОВО ДВИЖЕНИЕ