Читаем Фрактальная геометрия природы полностью

Несомненно, в большинстве случаев само множество C представляет собой весьма грубую модель, нуждающуюся в многочисленных уточнениях. И все же я настаиваю, что те самые свойства, благодаря которым многие считают канторовы дисконтинуумы патологией, незаменимы при моделировании перемежаемости и должны быть сохранены в последующих, более реалистичных, заменителях этих множеств.

Рис. 120 и 121. КАНТОРОВЫ ТРОИЧНЫЕ ГРЕБЕНЬ И БРИКЕТ (РАЗМЕРНОСТЬ ГОРИЗОНТАЛЬНОГО СЕЧЕНИЯ D=ln2/ln3=0,6309). КОЛЬЦА САТУРНА. КАНТОРОВЫ ЗАНАВЕСЫ


Инициатором для канторовой пыли служит интервал [0, 1], а генератор имеет следующий вид:


Рис. 120. Канторову пыль необычайно трудно изобразить на рисунке, так как она настолько тонка и разрежена, что практически невидима. Для получения хоть какого-нибудь представления о ее форме, утолщим исходный интервал и назовем результат канторовым гребнем. < Строго говоря, у нас получится декартово произведение канторовой пыли длины 1 на отрезок длины 0,03. ►

Створаживание. Построение канторова гребня описывается процессом, который я назвал створаживанием. Сначала изобразим стержень круглого сечения (в проекции получится прямоугольник с соотношением «высота/длина», равным 0,03). Удобнее всего представить, что материал, из которого изготовлен стержень, имеет очень малую плотность. Затем материал стержня начинает «створаживаться», смещаясь из средней трети стержня к его крайним третям, причем положение последних остается при этом неизменным. При дальнейшем створаживании вещество уходит из средних третей каждой из крайних третей уже в их собственные крайние трети и так далее до бесконечности. В пределе мы получим бесконечно большое количество бесконечно тонких пластин бесконечно большой плотности. Эти пластины распределены вдоль прямой весьма особенным образом, обусловленным производящим процессом. На рисунке створаживание остановлено на этапе, соответствующем предельному разрешению как типографского пресса, так и человеческого глаза, — последняя строка неотличима от предпоследней; каждый из элементов последней строки выглядит просто как темная линия, тогда как на самом деле представляет собой две тонкие пластины, разделенные пустым промежутком.

Канторов брикет. Выберем в качестве исходного объекта для створаживания круглый корж, толщина которого значительно меньше его диаметра, и пусть тесто при створаживании разделяется на более тонкие коржи (освобождая место для соответствующей начинки). В результате получим этакий бесконечно экстраполированный «наполеон», который можно назвать канторовым брикетом.

Кольца Сатурна. Раньше считалось, что Сатурн окружен одним сплошным кольцом. Затем была открыта щель, разделяющая кольцо, потом еще одна, и наконец «Вояджер-I» обнаружил огромное количество таких щелей, в большинстве своем очень узких. «Вояджер» также установил, что кольца прозрачны: они пропускают солнечный свет... как и подобает множеству, названному нами «тонким и разреженным».

Таким образом, структура колец (см. [542], особенно иллюстрацию на обложке) являет собой, по всей видимости, совокупность близко расположенных окружностей, причем радиус каждой из этих окружностей соответствует расстоянию от некоторой точки отсчета до некоторой точки канторовой пыли. < Специальное название для такого множества — декартово произведение канторовой пыли на окружность. Вообще говоря, мы, наверное, получим более близкую к оригиналу картинку, если умножим окружность на пыль положительной меры, подобную тем, что рассматриваются в главе 15. ► Добавление в последнюю минуту: та же идея независимо от меня озарила и авторов [10], только они соотнесли ее с уравнением Хилла; в Примечании 6 к упомянутой работе содержится немало других соображений по существу вопроса.

Спектры. Хартер описывает в [199] спектры некоторых органических молекул; сходство этих спектров с канторовой пылью потрясает.

Рис. 121. Этот рисунок помогает яснее представить форму канторовой пыли посредством помещения ее среди остальных пылевидных множеств с N=2 и переменным значением r. На вертикальной оси откладывается либо само значение r, изменяющееся в интервале от 0 до 1/2 (внизу), либо размерность D в интервале от 0 до 1 (вверху). Верхняя граница обоих занавесов — это полный интервал [0, 1]. Любой горизонтальный срез на каждом из рисунков представляет собой какую-либо канторову пыль (стрелками показаны значения r=1/3 и D=0,6309).

Знаменитый греческий парадокс. Греческие философы полагали, что условием неограниченной делимости тела является его непрерывность. Очевидно, они ничего не знали о канторовой пыли.

Рис. 125. ФУНКЦИЯ КАНТОРА, ИЛИ ЧЕРТОВА ЛЕСТНИЦА (РАЗМЕРНОСТЬ D=1, РАЗМЕРНОСТЬ МНОЖЕСТВА АБСЦИСС ПОДСТУПЕНЕЙ D ~ 0,6309). КАНТОРОВО ДВИЖЕНИЕ


Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература