ВХОДЯТ ЛИ ЗВЕЗДЫ В ДИАПАЗОН МАСШТАБНОЙ ИНВАРИАНТНОСТИ?
Очевидно, что диапазон масштабной инвариантности, в котором удовлетворяет неравенству 0, не должен включать в себя объекты с явно определенными границами — такие, например, как планеты. А вот входят ли в него звезды? Согласно данным, полученным Уэбби ком и приведенным в [135], массу Млечного Пути внутри сферы рад уса R
вполне можно представить в виде M(R)∝RD, где величина экстраполируется с галактик. Мы, однако, продолжим наше обсуждение исключительно в галактических терминах.<3<>СУЩЕСТВУЕТ ЛИ У ДИАПАЗОНА МАСШТАБНОЙ ИНВАРИАНТНОСТИ ВЕРХНИЙ ПОРОГ?
Вопрос о том, насколько далеко в сторону очень больших масштабов простирается диапазон, внутри которого 0, весьма противоречив, причем в последнее время он снова привлек к себе внимание. Многие авторы либо прямо заявляют, либо подразумевают, что этот диапазон допускает существование внешнего предела, соответствующего размерам скоплений галактик. Другие авторы выражают свое несогласие с этим мнением. Де Вокулер [104] утверждает, что «кластеризация галактик и, возможно, всех остальных форм материи является доминатной характеристикой структуры Вселенной во всех доступных наблюдению масштабах, причем нет никаких указаний на какое бы то ни было приближение к однородности; средняя плотность вещества неуклонно падает по мере того, как принимаются во внимание все большие объемы пространства, и у нас нет экспериментально подтвержденных оснований полагать, что эта тенденция не распространяется на значительно большие расстояния и меньшие значения плотности».
Дебаты между этими двумя школами, безусловно, весьма интересны и важны — для космологии, но не для нашего эссе. Даже если диапазон, в котором 0, имеет границы с обеих сторон, само его существование достаточно значительно для того, чтобы оправдать самое тщательное исследование.
В любом случае Вселенная (совсем как тот клубок ниток, о котором мы говорили в главе 6) располагает, по всей видимости, целым рядом различных эффективных размерностей. Если начать с масштабов порядка радиуса Земли, то первой встретившейся нам размерностью будет 3 (такова размерность твердых тел с четкой границей). Далее размерность падает до 0 (так как материя рассматривается как скопление изолированных точек). Далее идет весьма интересный участок, характеризуемый некой нетривиальной размерностью, удовлетворяющей неравенству 0. Если масштабно-инвариантная кластеризация продолжается до бесконечности, то на этом последнем значении D
ряд эффективных размерностей и заканчивается. Если же существует конечный внешний порог, то к списку добавляется четвертый интервал размерностей, внутри которого точки теряют свою индивидуальность, и у нас на руках оказывается однородный газ, т. е. размерность снова возвращается к 3.<3<>Самым же наивным представлением является то, согласно которому галактики распределены во Вселенной приблизительно однородно. В этом случае последовательность размерностей D сводится к трем значениям: 3, 0 и опять 3.