Читаем Фрактальная геометрия природы полностью

Распределение звезд, галактики, скопления галактик и тому подобные материи издавна завораживают как любителей, так и специалистов, однако кластеризация до сих пор остается на периферии астрономии, да и всей астрофизики в целом. Главная причина заключается в том, что никто так и не в состоянии объяснить, почему распределение материи подчиняется иррегулярным иерархическим законам — по крайней мере, в определенном диапазоне масштабов. Во многих трудах, посвященных этой теме, можно встретить упоминание о феномене кластеризации, однако в серьезных теоретических исследованиях ее, как правило, поспешно заметают под ковер, утверждая, что галактики распределены вполне однородно — в масштабе, превышающем некий большой, но неопределенный порог.

Рассматривая ситуацию с менее фундаментальных позиций, можно сказать, что нежелание иметь дело с иррегулярным проистекает из отсутствия инструментов для его математического описания. От статистики требуется выбрать между двумя допущениями, из которых только одно можно счесть тщательно исследованным (асимптотическую однородность). Стоит ли удивляться, что результаты, мягко говоря, неубедительны?

Вопросы, однако, таковы, что от них трудно отмахнуться. Я считаю совершенно необходимым — параллельно с продолжением попыток объяснить кластеризацию — найти способ описать ее и смоделировать реальность чисто геометрическими средствами. Рассматривая эту тему с фрактальных позиций на протяжении нескольких глав настоящего эссе, мы рассчитываем с помощью недвусмысленных моделей показать, что полученные свидетельства предполагают такую степень кластеризации, которая далеко выходит за пределы, поставленные для нее существующими моделями.

Эту главу следует считать вводной: здесь мы познакомимся с одной весьма влиятельной теорией образования звезд и галактик, предложенной Хойлом, с основной формальной моделью их распределения, которой мы обязаны Фурнье д'Альбу (эта модель также известна как модель Шарлье), и, что самое важное, получим некоторые эмпирические данные. Мы покажем, что и теорию, и данные можно интерпретировать в рамках понятия о масштабно-инвариантной фрактальной пыли. Я настаиваю на том, что распределение галактик и звезд включает в себя некую зону самоподобия, внутри которой фрактальная размерность удовлетворяет неравенству 0. Кроме того, здесь вкратце изложены теоретические причины, согласно которым можно ожидать D=1, и, как следствие, обсуждается вопрос, почему наблюдаемая величина D составляет ~1,23.<3<>

Анонс. В главе 22 мы воспользуемся фрактальными инструментами для улучшения нашего понимания смысла космологического принципа, рассмотрим, как его можно и нужно модифицировать, и узнаем, почему такая модификация непременно требует случайности. Обсуждение скоплений в рамках усовершенствованной модели мы отложим до глав 22, 23 и с 32 по 35.

МОЖНО ЛИ ГОВОРИТЬ О ГЛОБАЛЬНОЙ ПЛОТНОСТИ МАТЕРИИ?

Начнем с тщательного рассмотрения концепции глобальной плотности материи. Как и в случае береговых линий, здесь все, на первый взгляд, выглядит очень простым, однако на деле очень быстро — и весьма интересно — запутывается. Для определения и измерения плотности начинают с массы M(R), сосредоточенной внутри сферы радиуса R с центром, совпадающим с центром Земли. Так оценивается приблизительная плотность, определяемая как

M(R)/[(4/3)πR3].

После этого величину R устремляют к бесконечности, а глобальная плотность определяется как предел, к которому сходится в этом случае приблизительная плотность.

Однако обязательно ли глобальная плотность сходится к положительному и конечному пределу? Если так, то скорость такого схождения оставляет желать лучшего, и это еще мягко сказано. Более того, оцеки предельной плотности, будучи рассмотрены во временной перспектив ведут себя довольно странно. По мере того как увеличивалась глубина наблюдаемой в телескоп Вселенной, приблизительная плотность на удивление систематически уменьшалась. Согласно де Вокулеру [104], уменьшение всегда было ∝RD−3. Наблюдаемый показатель D мно меньше 3 — в наилучшем приближении D=1,23.

Де Вокулер выдвинул тезис о том, что поведение величины приблизительной плотности отражает реальность, имея в виду, что M(R)∝RD. Эта формула вызывает в памяти классический результат для шара радиуса R, вложенного в евклидово пространство размерности E, — объем такого шара ∝RE. В главе 6 мы встречались с такой же формуле для кривой Коха, с той лишь разницей, что показателем там была не евклидова размерность E=2, а дробная фрактальная размерность. А в главе 8 мы получили формулу M(R)∝RD для канторовой пьи на временной оси (здесь E=1).

Все эти прецеденты заставляют (причем весьма настойчиво) предположить, что показатель де Вокулера D представляет собой не что иное, как фрактальную размерность.

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература