Читаем Фрактальная геометрия природы полностью

< Общая теория относительности утверждает, что при отсутствии материи локальная геометрия пространства стремится стать плоской и евклидовой, в то время как присутствие материи переводит ее в локально риманову. Здесь мы можем говорить о глобально плоской Вселенной, размерность которой равна 3 с локальными значениями D<3. Такой тип возмущений описан в [519], довольно туманной работе, автор которой приводит (с. 312) пример построения кривой Коха (см. главу 6), не ссылаясь при этом на самого Коха. ►

ВСЕЛЕННАЯ ФУРНЬЕ

Нам остается лишь построить фрактал, который удовлетворял бы правилу M(R)∝RD, и посмотреть, как он будет согласовываться с общепринятыми взглядами на Вселенную. Первая подробно описанная модель такого рода была предложена Э. Э. Фурнье д'Альбом (см. главу 40). Хотя книга Фурнье [152] представляет собой по большей части художественный вымысел, замаскированный под научное исследование, в ней все же содержится несколько чрезвычайно интересных соображений, которые мы вскоре обсудим. Сначала же, как мне кажется, следует описать структуру, предложенную Фурнье.

Начинаем построение с правильного восьмигранника, проекция которого представлена в центре рис. 141. Проекция показывает четыре угла квадрата, диагональ которого составляет 12 «единиц», и центр этого квадрата. Однако у восьмигранника есть еще две точки над и под нашей плоскостью на перпендикуляре, проведенном через центр квадрата, на одинаковом расстоянии в 6 «единиц» от этого центра.

Далее каждая точка заменяется шаром радиуса 1, который мы будем рассматривать как «звездный агрегат нулевого порядка». Наименьший шар, содержащий в себе все 7 первоначальных шаров, назовем «звездным агрегатом первого порядка». Агрегат второго порядка получается увеличением агрегата первого порядка в 1/r=7 раз и заменой каждого из новых шаров радиуса 7 копией агрегата первого порядка. Аналогичным образом, агрегат третьего порядка получается увеличением агрегата второго порядка в 1/r=7 раз и заменой каждого из шаров копией агрегата второго порядка. И так далее.

Короче говоря, при переходе между соседними порядками агрегации как число точек, так и радиус шаров увеличивается в 1/r=7 раз. Следовательно, для всякого значения R, которое является радиусом какого-либо агрегата, функция M0(R), определяющая количество точек, содержащихся в шаре радиуса R, имеет вид M0(R)=R. Для промежуточных R функция M0(R) принимает меньшие значения (достигая R/7), однако, согласно общей тенденции, M0(R)∝R.

Возможно также интерполировать агрегаты нулевого порядка последовательными этапами до агрегатов порядка —1, —2 и т. д. На первом этапе заменим каждый агрегат нулевого порядка копией агрегата первого порядка, уменьшенной в отношении 1/7, и так далее. При таком построении отношение M0(R)∝R остается истинным для все меньших значений R. После бесконечной экстра- и интерполяции мы получаем самоподобное множество размерности D=ln7/ln7=1.

Кроме того, размерность D=1 объекта в 3-пространстве вовсе не обязывает его непременно быть прямой линией да и любой другой спрямляемой кривой. Ему даже не обязательно быть связным. Каждая размерность D совместима с любой меньшей либо равной по величине топологической размерностью. В частности, топологическая размерность бесконечной в обе стороны вселенной Фурнье равна 0, так как она является вполне несвязной «пылью».

РАСПРЕДЕЛЕНИЕ МАССЫ: ФРАКТАЛЬНАЯ ГОМОГЕННОСТЬ

Шаг от геометрии к распределению массы представляется мне как нельзя более очевидным. Если каждый звездный агрегат нулевого порядка нагрузить единичной массой, то масса M(R) внутри шара радиуса R>1 идентична величине M0(R), а следовательно, ∝R. Кроме того, чтобы получить агрегаты порядка -1 из агрегатов нулевого порядка, необходимо разбить шар, который мы считали однородным и обнаружить, что он состоит из семи меньших шаров. На этом этапе правило M(R)∝R распространяется и на радиусы, меньшие единицы.

Рассматривая полученное распределение массы по всему 3-пространству, мы видим, что оно чрезвычайно неоднородно, хотя на фрактале Фурнье ему в однородности нет равных. (Вспомните рис. 120.) В частности, любые две геометрически одинаковые части вселенной Фурнье содержат одинаковые массы. Предлагаю такое распределение массы называть фрактально гомогенным.

< Предыдущее определение сформулировано в терминах масштабно-инвариантных фракталов, но концепция фрактальной гомогенности в общем случае гораздо шире. Она применима к любому фракталу, для которого положительна и конечна хаусдорфова мера в размерности D. Фрактальная гомогенность требует, чтобы масса, содержащаяся в множестве, была пропорциональна хаусдорфовой мере этого множества. ►

ВСЕЛЕННАЯ ФУРНЬЕ КАК КАНТОРОВА ПЫЛЬ. РАСШИРЕНИЕ Д0D≠1

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература