Читаем Фрактальная геометрия природы полностью

Согласно Фурнье, из того факта, что ни одна доступная наблюдению звезда не движется со скоростью, превышающей 1/300 от скорости света, можно вывести очень важное заключение. Масса, содержащаяся внутри мирового шара, возрастает прямо пропорционально его радиусу, а не объему, или, иными словами, плотность вещества внутри мирового шара обратно пропорциональна площади его поверхности... Поясним последнее утверждение — потенциал на поверхности сферы всегда одинаков, так как он прямо пропорционален массе вещества внутри сферы и обратно пропорционален расстоянию от центра. Как следствие, звездные скорости, близкие к скорости света, не являются распространенным явлением в любой части Вселенной.

СТВОРАЖИВАНИЕ ПО ХОЙЛУ; КРИТЕРИЙ ДЖИНСА

Иерархическое распределение фигурирует и в теории Хойла (см. [229]), согласно которой галактики и звезды образуются посредством каскадного процесса, причем начинается этот процесс с однородного газа.

Рассмотрим газовое облако массы M, нагретое до температуры T и распределенное с однородной плотностью внутри шара радиуса R. Как показал Джине, при M0/R0=JkRT/G возникает «критическая» ситуация. (Здесь k — постоянная Больцмана, a J — числовой коэффициент.) Находясь в критическом состоянии, первичное газовое облако нестабильно и неизбежно должно сжаться.

Хойл постулирует, что (а) величина M0/R0 достигает критического значения где-то в самом начале, (б) сжатие прекращается, когда объем газового облака уменьшается до 1 /25 от первоначального объема, и (в) каждое облако на этом этапе распадается на пять меньших облаков с одинаковыми размерами, массами M1=M0/5 и радиусами R1=R0/5. То есть процесс приходит к тому же месту, на каком начался: результатом его является нестабильное состояние, за которым следует второй этап сжатия и разделения, затем — третий и т. д. Створаживание прекращается лишь тогда, когда облака становятся настолько непрозрачными, что задерживают образующееся при сжатии газа тепло внутри.

Как и в различных других областях, в которых встречаются подобные каскадные процессы, я предлагаю и к этому случаю применить общую терминологию, т. е. пять облаков мы будем называть творогом, а сам каскадный процесс — створаживанием. Как я уже упоминал при введении последнего термина, я просто не мог удержаться от аллюзий с галактиками.

Фурнье ради удобства графического изображения своей модели вводит N=7, Хойл же утверждает, что физически обоснованным является значение N=5. Детализация геометрической иллюстрации Фурнье выходит за всякие — разумные или необходимые — рамки. Высказывания Хойла относительно пространственной структуры творога, напротив, довольно туманны. Детальной реализации модели Хойла нам придется подождать до главы 23, где мы рассмотрим случайное створаживание. Как бы то ни было, упомянутые расхождения не имеют принципиального значения: главным является тот факт, что r=1/N, т. е. показатель D=1 должен стать неотъемлемой частью нашего построения, если мы хотим, чтобы створаживание завершалось тем же состоянием, с которого оно начиналось, — а именно, нестабильностью Джинса.

Кроме того, если длительность первого этапа принять за 1, то, согласно данным по газовой динамике, длительность того этапа составит 5−m. Следовательно, общая длительность всего процесса, состоящего из бесконечного количества этапов, не превышает 1,2500.

ЭКВИВАЛЕНТНОСТЬ ПОДХОДОВ ФУРНЬЕ И ХОЙЛА К ВЫВОДУ D =1

На границе нестабильного газового облака, удовлетворяющего критерию Джинса, скорость и температура связаны соотношением V2/2=JkT, так как GM/R равно и V2/2 (Фурнье), и JkT (Джине). Вспомним теперь о том, что в статистической термодинамике температура газа прямо пропорциональна среднеквадратической скорости его молекул. Значит, из комбинации критериев Фурнье и Джинса можно предположить, что на границе облака скорость падения макроскопического объекта прямо пропорциональна средней скорости его молекул. Тщательный анализ роли температуры в критерии Джинса непременно покажет, что эти два критерия эквивалентны. < Вероятнее всего, аналогия распространяется и на справедливость отношения M(R)∝R внутри галактик, о чем сообщает Валленквист в [583]. ►

ПОЧЕМУ D = 1,23, А НЕ D = 1?

Расхождение между эмпирическим значением D=1,23 и теоретическим значением Фурнье и Хойла D=1 поднимает важную проблему. П. Дж. Э. Пиблс рассмотрел ее в 1974 г. с позиций теории относительности. В его труде [467] получили исчерпывающее освещение физический и статистический (но не геометрический) аспекты упомянутой проблемы.

ФРАКТАЛЬНАЯ РАЗМЕРНОСТЬ НЕБА

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература