Читаем Фрактальная геометрия природы полностью

Подвергнем ошибки анализу с постепенно возрастающей точностью. Грубый анализ показывает наличие периодов, во время которых не зарегистрировано ни одной ошибки. Условимся называть эти периоды затишья «паузами нулевого ранга», если их длительность превышает один час. Любой временной промежуток, ограниченный с обеих сторон паузами нулевого ранга, назовем «пакетом ошибок нулевого ранга». Увеличив точность анализа в три раза, мы увидим, что исходный пакет также «прерывист». То есть более короткие паузы «первого ранга» длительностью 20 мин или больше перемежаются более короткими пакетами «первого ранга». Аналогично, каждый из последних содержит несколько пауз «второго ранга» длительностью 400 с, разделяющих пакеты «второго ранга» и т.д.; каждый этап основывается на паузах и пакетах, в три раза более коротких, чем предыдущие. Грубую иллюстрацию этого процесса можно видеть на рис. 120. (На пояснение пока внимания не обращайте.)

Предыдущее описание предполагает существование такого понятия, как относительное расположение пакетов k-го ранга внутри пакета k−1-го ранга. Распределение вероятностей этих относительных расположений, по всей видимости, не зависит от k. Очевидно, такая инвариантность говорит о самоподобии, а там и до фрактальной размерности недалеко, однако не будем спешить. Рассмотрения различных прецедентов, содержащиеся в настоящем эссе, нацелены, помимо прочего, как на обнаружение нового, так и на уточнение старого. Исходя из этих соображений, представляется оправданным несколько изменить исторический порядок и представить новое с помощью грубого неслучайного варианта стохастической модели ошибок Бергера - Мандельброта (см. главу 31).

ПРИБЛИЖЕННАЯ МОДЕЛЬ ПАКЕТОВ ОШИБОК: ФРАКТАЛЬНАЯ КАНТОРОВА ПЫЛЬC

В предыдущем разделе мы предприняли попытку построить множество ошибок, начав с прямой линии, представляющей временную ось, и вырезая все уменьшающиеся свободные от ошибок паузы. Возможно, для естественных наук такая процедура и внове, однако в чистой математике она используется довольно давно — по меньшей мере, со времен Георга Кантора (см. [207], особенно с. 58).

У Кантора (см. [62]) инициатором служит замкнутый интервал [0,1]. Термин «замкнутый» и квадратные скобки означают, что крайние точки принадлежат интервалу: такая запись уже использовалась в главе 6, однако до сих пор у нас не было необходимости указывать на это явным образом. Первый этап построения состоит в разделении интервала [0,1] на три участка и удалении открытой средней трети, которая обозначается ]1/3, 2/3[. Термин «открытый» и развернутые квадратные скобки означают, что крайние точки интервала в этот интервал не входят. Затем удаляются средние трети каждого из N=2 оставшихся отрезков. И так далее до бесконечности.

Получаемое в результате множество остатков C называется либо двоичным, поскольку N=2, либо троичным, поскольку исходный интервал делится на три части.

В общем случае количество частей, называемое основанием, обозначается буквой b, причем отношение между N-й частью множества и всем множеством определяется коэффициентом подобия r=1/b. Множество C называется также канторовым дисконтинуумом; чуть позже я предложу свой термин «канторова фрактальная пыль». И еще: так как точка на временной оси отмечает некое «событие», множество C представляет собой фрактальную последовательность событий.

СТВОРАЖИВАНИЕ, ТРЕМЫ И СЫВОРОТКА

В рамках термина, который Льюис Ричардсон применил к турбулентности, а мы позаимствовали для описания береговых линий и кривых Коха в главе 6, канторова процедура является каскадом. «Вещество», однородно распределенное вдоль инициатора [0, 1], подвергается воздействию центробежного вихря, который «сметает» его к крайним третям интервала.

Среднюю треть, вырезанную из интервала [0, 1], мы будем называть трёма-генератором. Этот неологизм образован от греческого слова, означающего «дыра, отверстие» (дальним родственником этого слова является латинское termes «термит»). Это, пожалуй, самое короткое греческое слово из тех, что на сегодняшний день еще не обзавелись значительной терминологической нагрузкой.

В данном контексте тремы совпадают с паузами, однако в других примерах, с которыми мы встретимся позже, совпадения не происходит, поэтому и возникла необходимость в двух разных терминах.

По мере того, как опустошается «трема первого порядка», вещество сохраняется и перераспределяется с однородной плотностью по внешним третям, которые мы будем называть предтворогом. Здесь в действие вступают еще два вихря, и та же процедура повторяется на интервалах [0, 1/3] и [2/3, 1]. Процесс продолжается как ричардсонов каскад, стремясь в пределе к множеству, которое мы назовем творогом. Если длительность этапа пропорциональна размеру вихря, то общая длительность процесса конечна.

Для пространства, не занятого творогом, я предлагаю термин сыворотка (в совокупности получаем вполне полноценную простоквашу).

Перейти на страницу:

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального
Форма реальности. Скрытая геометрия стратегии, информации, общества, биологии и всего остального

Эта книга изменит ваше представление о мире. Джордан Элленберг, профессор математики и автор бестселлера МИФа «Как не ошибаться», показывает всю силу геометрии – науки, которая только кажется теоретической.Математику называют царицей наук, а ее часть – геометрия – лежит в основе понимания мира. Профессор математики в Висконсинском университете в Мэдисоне, научный сотрудник Американского математического общества Джордан Элленберг больше 15 лет популяризирует свою любимую дисциплину.В этой книге с присущими ему легкостью и юмором он рассказывает, что геометрия не просто измеряет мир – она объясняет его. Она не где-то там, вне пространства и времени, а здесь и сейчас, с нами. Она помогает видеть и понимать скрытые взаимосвязи и алгоритмы во всем: в обществе, политике и бизнесе. Геометрия скрывается за самыми важными научными, политическими и философскими проблемами.Для кого книгаДля тех, кто хочет заново открыть для себя геометрию и узнать об этой увлекательной науке то, чего не рассказывали в школе.Для всех, кому интересно посмотреть на мир с новой стороны.На русском языке публикуется впервые.

Джордан Элленберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература