В случае, если кривая Пеано представлена как общая граница между деревом рек и деревом водоразделов, пути, соединяющие точки
И еще.
Очень важные дополнительные соображения относительно движений Пеано подробно изложены в пояснениях к нижеследующим рисункам.Рис. 95. КВАДРАТИЧНОЕ ПОСТРОЕНИЕ КОХА С РАЗМЕРНОСТЬЮ
Заполняющая плоскость кривая Пеано, представленная на этом рисунке, является оригинальной кривой Пеано. Невероятно краткий алгоритм Джузеппе Пеано был графически воплощен в работе Мура [435] (которая получила, пожалуй, чрезмерно высокую оценку во «Фракталах» 1977 г.). На нашем рисунке кривая Пеано развернута на 45 градусов — тем самым эта «блудная» конструкция оказывается возвращенной в лоно кривых Коха, т. е. теперь генератор всегда одинаково размещается на сторонах терагона, полученного на предыдущем этапе построения.
Инициатором здесь выступает единичный квадрат (черный внутри), а генератор выглядит следующим образом:
Поскольку генератор — самокасающаяся кривая, получаемые в результате построения конечные острова Коха представляют собой скопления черных квадратов, словно вырезанных из бесконечной шахматной доски. После
На трех верхних картинках двусмысленность самокасаний устранена путем срезания соответствующих углов с сохранением общей площади.
Если четвертый этап построения данной кривой изобразить в том же масштабе, то мы увидим лишь сплошной серый фон, однако увеличенное изображение одной четвертой части, получающейся в результате береговой линии, вполне можно проследить взглядом (рискуя, правда, заработать при этом морскую болезнь). Глядя на этот рисунок, понимаешь, что люди имеют в виду, когда говорят, что предельная кривая Коха заполняет плоскость.
Было бы замечательно, если бы мы смогли определить в этом случае предельный остров по аналогии с островами Коха в главе 6, однако здесь это, к сожалению, невозможно. Любая выбранная наугад точка почти наверняка будет бесконечно колебаться между сушей и морем. Терагоны на поздних этапах построения пронизаны бухтами или реками настолько глубоко и однородно, что суша и вода делят любой квадрат среднего размера
Интерпретация.
Предельная кривая Пеано устанавливает непрерывное соответствие между прямой и плоскостью. Математическая неизбежность самокасаний — классический результат. Новым является тот факт, что самокасания играют важную роль в моделировании природных феноменов.Дальний порядок.
Не зная о нисходящих каскадах, ответственных за построение наших конечных кривых Пеано, можно только изумиться тому необычайному дальнему порядку, который позволяет этим кривым избегать не только самопересечений, но и самокасаний. Что касается последнего, то весь порядок вообще держится только на жесточайшей дисциплине: малейшее послабление — и все насмарку!< А если совсем позабыть о дисциплине, то мы почти наверняка не получим ничего, кроме бесконечно повторяющихся самопересечений, поскольку полностью недисциплинированная кривая Пеано — это броуновское движение, о котором мы уже упоминали во второй главе и поговорим подробнее в главе 25.
Теорема Лиувилля и эргодичность. В механике принято представлять состояние сложной системы одной-единственной точкой в «фазовом пространстве». Известно, что в случаях применения к этому пространству уравнений движения каждая его область ведет себя следующим образом: ее протяженность (гиперобъем) остается инвариантной (теорема Лиувилля), однако ее форма меняется — область рассеивается и заполняет весь доступный объем с максимально возможной однородностью. Очевидно, что оба этих свойства находят отражение в том, как, с нашей легкой руки, ведет себя черный квадрат при построении кривой Пеано. Представляется интересным «копнуть» глубже и увидеть, что во многих упрощенных «динамических» системах, допускающих подробное изучение, каждая область рассеивается, трансформируясь во все удлиняющуюся и утончающуюся ленту. Интересно также было бы выяснить, не происходит ли дисперсия других систем по древовидным кривым Пеано вместо лент. ►